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Abstract
Our study delved into the intricate relationship between statistical
correlation measures and noise contamination. By applying math-
ematical models and conducting experiments, we examined how
noise fluctuations impair the credibility and interpretation of stan-
dard correlation coefficients. Extending the scope, we then further
explored the interaction between noise levels and the Maximum
Information Coefficient (MIC). Utilising a combination of theoreti-
cal derivations and empirical assessments, we clarified the effects
of varying noise intensities on MIC’s efficacy. A central aspect of
this research is to obtain a relation for noise and MIC. We began
with a naive approach in upper bounding noise providing us with
a deeper understanding of the connection between noise and MIC.
With this new nuanced understanding we derive a more effective
method to lower bound the MIC with noise. Furthermore through
mathematical proof and numerical data we show its consistency
and validity.

CCS Concepts
• Mathematics of computing→ Nonparametric statistics.
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1 Introduction
Data is one of the most important resources in the modern world.
Although it has always been present, only recently were we able
to amass it in great quantities and derive insight from them. The
emergence of a new resource demands faster, better, and more
efficient ways of refining and processing. There is a growing need
for the efficient processing of extremely large amounts of data.
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It is vital for data analysis to find relationships between variables.
The importance of such a basic investigation is immense as it paves
the way for potentially new and groundbreaking areas of investiga-
tion. Finding the exact relationship between variables allows us to
manipulate one variable through another. It provides us with the
insight hidden in the numerical immensity of data that is invisible
through normal observation. When this insight is aligned with AI
and machine learning, it produces staggeringly accurate predictions
based on a multitude of variables.

The constraints of data science however, still apply despite the
explosion of enthusiasm and demand in this field. The 4 V’s of
big data (i.e., volume, velocity, variety, and veracity) are the key
framework in data science that helps us understand and manage
datasets. In the modern world, volume, velocity, and variety are
at an all-time high as the digitization of society has bolstered the
production, collection, and variety of data. However, the veracity
or the quality of data is still a realistic issue that has not been
miraculously solved by digitization [3].

The obvious solution is to produce higher quality data, but an al-
ternative could be to produce better ways of detection and analysis.
The MIC is one such measure [1–4]. Maximum Information Coeffi-
cient (MIC) is a new statistical measure that has many promising
properties [9]. It is a tool for detecting and quantifying the strength
of any linear or nonlinear association between two variables in a
dataset.

The MIC is a non-parametric measure that aims to measure
the mutual information shared by two random variables. Mutual
information is a fundamental concept in information theory that
quantifies the amount of information one variable provides about
another. Unlike Pearson’s correlation coefficient, which is most
informative for linear relationships, MIC is capable of detecting a
wide range of associations, including nonlinear ones. The MIC is
also relatively tolerant of noise and is equitable in that there is no
bias towards specific types of functions [5–7].

Although the MIC is an extremely effective tool that may make
up for noisy low-quality data, noise is still important to consider.
Noise refers to unwanted variability or error that can distort signals,
affecting the accuracy of measurements and results.

The noise level ℎ in the context of this paper is defined as a
uniform distribution with ranges [−ℎ,ℎ] that is applied to the 𝑌
coordinate of each point. This definition simplifies testing and
modelling without simplifying the effects of noise too much.

The goal of this paper is to examine the noise tolerances of MIC
through both a lower and upper bound. We do this by examining
the already present lower bound given by the source report and
finding ways to potentially improve it through theory and numeri-
cal analysis. We also try to discuss the theory of an upper bound
of noise. The goal is to verify the bounds of MIC and Noise and
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examine the accuracy and tightness of each with respect to different
functions.

The contributions of this paper are as follows.
• We investigated the relationship between correlation coef-
ficients and noise levels, examining this connection from
both theoretical and experimental perspectives. Through
mathematical formulations and hands-on experimentation,
our study aimed to illuminate how variations in noise affect
the reliability and interpretation of correlation measures.

• We further examined the relationship between MIC and
noise levels, approaching this investigation from both math-
ematical formulations and experimental analyses. This study
aimed to elucidate how varying degrees of noise impact
the estimation and interpretation of MIC, offering insights
through theoretical derivation and practical validation.

• We identified the problems with a derived theoretical up-
per bound including accuracy and utility. We examined
the source of its problem being a lower bound from the
source text. After examining the proof and logic of this lower
bound we derived a more effective and tighter lower bound.
Through mathematical proof and numerical data we show
this new improved lower bound to be consistently a tighter
bound and a valid bound.

• With this new lower bound shown to be valid and tighter the
application value of this result is promising. An existingmore
accurate lower bound on noise that is described in the text
relies on the existing lower bound which we improved upon.
A potential application of this research is an improvement of
the lower bound mentioned before through using the more
effective lower bound.

The rest of the paper is structured as follows. Section II
introduces the framework of MIC, detailing its calculation process.
Section III discusses lower bounding the correlation coefficient
with respect to noise. Section IV investigates the boundary of
noise level with respect to fixed thresholds of MIC, focusing on
deriving an upper bound and lower bound for noise level. Section
V explains the proof of a key lower bound equation, equation (21)
to understand the logic and set the groundwork for improving this
lower bound. Section VI explains the problems of equation 25 and
by extension the theorised upper bound and proposes an improved
lower bound. Section VII proves the proposition and section VIII
contains experimental validations and discussion of results. Section
IX surveys related work in the field, providing a broader context
for our study. Lastly, Section X concludes the paper, summarizing
key findings and suggesting avenues for future research.

2 Analysis of the process of MIC
Some preliminary concepts are needed to better understand the
intuition of MIC. Entropy which is the measure of randomness of a
variable is defined as:

𝐻 (𝑋 ) = −
∑︁
𝑥

𝑝 (𝑥) log(𝑝 (𝑥)) (1)

Mutual information as the name implies measures how much
knowing one variable will tell you about the other. In the MIC it is

defined in terms of entropy:

𝐼 (𝑋 ;𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) (2)

Intuitively it can be understood that mutual information mea-
sures dependencies between two variables by looking at the ran-
domness of both. If 𝑋 and 𝑌 are related, by knowing exactly what
𝑋 is the entropy or randomness of 𝑌 can be reduced as there is a
functional relationship. Mutual information measures how much
entropy or uncertainty in one variable can be reduced by knowing
the other [8].

The importance of identifying relations between variables cannot
be understated, and the MIC is perhaps one of the most effective
methods yet. Therefore, it is important to overview its methodology,
definition, and key processes as done in the following.

The MIC process begins with a set of ordered pairs 𝐷 which
can be partitioned via a grid separating the 𝑥 values into 𝑋

bins and 𝑦 values into 𝑌 bins; this is known as an 𝑥 by 𝑦 grid
[1]. In Figure 1, the 𝑥 bins would be going from left to right:
(2/8, 1/8, 2/8, 2/8, 1/8), and the 𝑦 bins would be going from bottom
to top: (1/8, 2/8, 1/8, 2/8, 2/8).

Figure 1: Example of graph partition.

Given this grid 𝐷 where all 𝑥 and 𝑦 are positive integers, we can
create two distributions. One distribution is obtained from the bins
of 𝑥 and the other from the bins of 𝑦 where each bin’s probability
is the number of points in the bin divided by total points. So for a 2
by 2 grid where each grid has 1 point, the probability distribution
for 𝑥 would be (1/2, 1/2) and 𝑦 would be (1/2, 1/2).

Define 𝐼∗ (𝐷, 𝑥,𝑦) to be the mutual information of the 𝑥 by 𝑦 grid
whose partition produces the largest possible mutual information
between the 𝑥 bin distribution and 𝑦 bin distribution.

𝐼∗ (𝐷, 𝑥,𝑦) = max 𝐼 (𝐷 | 𝐺) (3)

Now define the term 𝐼∗ (𝐷, 𝑥,𝑦)/logmin{𝑥,𝑦} in order to nor-
malize the mutual information value. In the example diagram, the
division value would be log(5) since both |𝑋 | and |𝑌 | are 5. This
division normalizes the values as different grid resolutions produce
different maximum mutual information, so in order to normalize
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them we divide each mutual information by the upper bound which
is logmin{𝑥,𝑦}.

𝑀 (𝐷)𝑥,𝑦 =
𝐼∗ (𝐷, 𝑥,𝑦)

logmin{𝑥,𝑦} (4)

The matrix containing all the normalized maximum mutual in-
formation values 𝐼∗ (𝐷, 𝑥,𝑦)/logmin{𝑥,𝑦} that have a grid size less
than a predefined 𝐵(𝑛) of sample size 𝑛 is known as the character-
istic matrix𝑀 (𝐷). Where𝑀𝑥𝑦 (𝐷) is the 𝐼∗ (𝐷, 𝑥,𝑦)/logmin{𝑥,𝑦}
value of an 𝑥 by 𝑦 grid in the (𝑥,𝑦) cell of the matrix.

MIC(𝐷) = max
𝑥𝑦<𝐵 (𝑛)

{𝑀 (𝐷)𝑥,𝑦} (5)

The MIC score is the largest entry in the characteristic matrix.
The first two steps of fixing a grid size and finding the maximal
mutual information is repeated until the entire matrix is full, the
matrix size essentially limits how fine the grid can be and sets a
maximal grid size.

The maximal grid size defined as 𝐵(𝑛) is usually set to 𝑛0.6 [2],
𝐵(𝑛) is equivalent to the maximum number of cells of a grid or
more simply the product of the maximum number of 𝑥 bins and
maximum number of 𝑦 bins. Naturally a large 𝐵(𝑛) will produce
a higher MIC and can be colloquially thought of as the sensitivity
setting of the MIC’s detection.

The immediate conclusion is that 𝐵(𝑛) should be set as high as
possible so that detection is as thorough as possible. The problem
however is the drastic runtime increase which makes high maximal
grid sizes unfeasible to run. Setting 𝐵(𝑛) too high may also lead the
MIC to mistake noise as minute relationships or focusing too much
on irrelevant relationships. There is however still an incentive to
have a high maximal grid size not only for more minute analysis
but also to counteract the disrupting effects of noise.

Advantages of the MIC include: 1) Versatility: The MIC can
detect various types of relationships (linear, non-linear, monotonic,
and complex). 2) Universality: The MIC aims to be a universal
dependence measure, suitable for a wide variety of data types. 3)
Interpretability: The MIC score is easily interpreted, with higher
values indicating stronger relationships.

Limitations include: 1) Computational Cost: Calculating MIC can
be computationally intensive due to the need to test multiple grids.
2) False Discovery Rate: Without proper adjustment, MIC may lead
to high false discovery rates in large datasets.

The symbols used in this paper and their meanings are presented
in Table 1.

3 Correlation coefficient and noise
The correlation coefficient, a measure of linearity is a very tra-
ditional measure for finding linear relationships. It is defined as
follows:

𝜌𝑋,𝑌 =
𝐸 [(𝑋 − 𝜇𝑋 ) (𝑌 − 𝜇𝑌 )]

𝜎𝑋𝜎𝑌
(6)

where 𝐸 is the expectation, 𝜇𝑋 and 𝜇𝑌 are the means of 𝑋 and 𝑌
and 𝜎𝑋 , 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌 .

The correlation coefficient is given a direct equality as well as an
upper bound from the source report. The following two inequalities
are applied on the unit interval 𝑓 : [0, 1] → [0, 1] and for any 𝑘 > 0.

Table 1: Symbol Abbreviation.

Term Definition

𝐻 (𝑋 ) Entropy, the measure of randomness

𝐼 (𝑋 ;𝑌 ) Mutual information, measure of how much entropy
is reduced in X by knowing Y

𝐼∗ (𝐷, 𝑥,𝑦) The maximum possible mutual information induced
by a (x,y) grid on D

𝑀 (𝐷)𝑥,𝑦
The matrix where values of 𝐼∗ (𝐷, 𝑥,𝑦) normalized
by dividing by logmin{𝑥,𝑦} are stored

𝐵(𝑛)
The maximal grid size which is equal to the product
of the largest possible 𝑥 bin and 𝑦 bin, it can be
thought of as the maximum resolution of the grid

𝜌𝑋,𝑌
The correlation coefficient which measures how
linear the relationship between 𝑋 and 𝑌 is

𝐸 (𝑋 ) the expectation of 𝑋
𝜇𝑋 the mean of 𝑋
𝜎𝑋 the standard deviation of 𝑋

𝑅(𝑘)2 the square of the correlation coefficient of 𝑓 (𝑋 ) and
𝑓 (𝑋 ) + 𝐸𝑘

𝐸𝑘 the uniform distribution on [−𝑘, 𝑘]
𝜎2 the standard deviation of 𝑓 (𝑋 )
𝑘 the noise level

𝑠max
the maximum slope in absolute value of 𝑓 (𝑋 ) on
the unit interval

𝑠min
the minimum slope in absolute value of 𝑓 (𝑋 ) on
the unit interval

𝐶0 The MIC score of noiseless data
𝐶ℎ A user set threshold MIC score with noise level ℎ

𝐶𝑘

A hypothetical MIC score value whose noise level
when within the boundary defined will be guaran-
teed to be greater or equal to 𝐶ℎ

𝑀𝐼𝐶 (𝐹𝑘 )
The MIC score of 𝐹𝑘 where 𝐹𝑘 is the distribution
(𝑋, 𝑓 (𝑋 ) + 𝐸𝑘 )

𝑐

The number of columns which contain a point such
that |𝑓 (𝑥) −𝑦0 | ≤ 𝑘 where 𝑓 is a nowhere constant
function and 𝑦0 is the 𝑦 coordinate that splits the
points so that half are above this 𝑦 value and half
are below.

𝑛 the number of points in the data set
𝛼 a value less than 1/2

𝑙 (𝑓 , 𝑘) the fraction of the unit interval on which |𝑓 (𝑥) −
𝑦0 | ≤ 𝑘

𝑆avg,𝑖

average slope of the ith column , defined as the gra-
dient of the line between (𝑥i, 𝑦0−𝑘) and (𝑥i+1, 𝑦0+𝑘)
where 𝑥i and 𝑥i+1 are the boundaries of the ith col-
umn.

𝑆avg the smallest of 𝑆avg,𝑖 across all columns

The equality is defined as follows:

𝑅(𝑘)2 = 𝜎2

𝜎2 + 𝑘2
3

=
1

1 + 𝑘2

3𝜎2

(7)
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where 𝑅(𝑘)2 is the square of the correlation coefficient of 𝑓 (𝑋 )
and 𝑓 (𝑋 ) + 𝐸𝑘 . 𝐸𝑘 is the uniform distribution on [−𝑘, 𝑘]. 𝜎2 is the
standard deviation of 𝑓 (𝑋 ). 𝑘 is the noise level. This can be turned
into the following upper bound:

𝑅(𝑘)2 ≤ 1

1 + 4𝑠max𝑘2

3𝑠max−2
(8)

where 𝑠max is the maximum slope in absolute value of 𝑓 (𝑋 ) on the
unit interval.

4 Boundary of noise level tolerated by MIC
Let us define𝐶0 to be the MIC score of noiseless data for a relation-
ship. Let 𝐶ℎ be a user-defined threshold value of MIC associated
with noise level ℎ. Naturally, 𝐶0 ≥ 𝐶ℎ , since higher noise levels
typically result in lower MIC scores. Now, assume we have new
data with noise level 𝑘 and MIC score𝐶𝑘 . We will define upper and
lower bounds for noise level 𝑘 such that if it falls within this bound-
ary, defined using 𝐶ℎ and other variables, 𝐶𝑘 will be guaranteed to
be greater than or equal to the threshold value𝐶ℎ . We will also use
an inequality from proposition 6.17[7]

𝐶𝑘 = MIC(𝐷) ≥ 𝑘 − log(𝑙)
log(𝐵(𝑛)𝛼 ) (9)

where 𝑘 is the noise level, 𝑙 is the maximum number of bins on the
𝑦 axis or in other words the maximum number of unique 𝑦 values,
and 𝐵(𝑛)𝛼 is the maximal grid size raised to the power of alpha that
is less than 1

2 . 𝐷 is a set of 𝑁 ordered pairs with distinct 𝑥 values
and whose 𝑦 values are defined by functions 𝑓1, 𝑓2, 𝑓3, . . . 𝑓𝐿 such
that for all (𝑥,𝑦) pairs in 𝐷 , 𝑦 = 𝑓𝑖 (𝑥) for some i in the set [1,2,3 ...
L]. 𝑌 values are (𝐵(𝑛)𝛼 , 𝑘) partitionable. We can add an inequality
to this equation to obtain:

𝐶𝑘 ≥ 𝑘 − log(𝑙)
log(𝐵(𝑛)𝛼 ) ≥ 𝐶ℎ (10)

Since we want the arbitrary MIC value with noise 𝑘 to be above
the threshold value. By rearranging we obtain:

𝑘 ≥ 𝐶ℎ + log(𝑙)
log(𝐵(𝑛)𝛼 ) (11)

Now using another equation from the source material, we can
define an upper bound for noise level 𝑘[7]

MIC(𝐹𝑘 ) ≥ 1 − 2𝑐
𝑠min

· 𝑘 (12)

where 𝐹𝑘 is the distribution (𝑋, 𝑓 (𝑋 ) + 𝐸𝑘 ), 𝐸𝑘 is the uniform dis-
tribution on [−𝑘, 𝑘] essentially noise, and 𝑓 (𝑋 ) is the functional
relationship without noise. 𝑘 is the noise level. 𝑐 is the number of
columns which contain a point such that |𝑓 (𝑥) − 𝑦0 | ≤ 𝑘 . 𝑓 is a
nowhere constant function and𝑦0 is the median of every point with
respect to the 𝑦 axis. 𝑠min is the minimum slope on the interval of
the data. Once again we add our threshold value as a lower bound
giving:

𝐶𝑘 = MIC(𝐹𝑘 ) ≥ 1 − 2𝑐
𝑠min

· 𝑘 ≥ 𝐶ℎ (13)

Rearranging gives the following upper bound:

1 ≥ 𝐶ℎ + 2𝑐
𝑠min

· 𝑘 (14)

(1 −𝐶ℎ)𝑠min
2𝑐

≥ 𝑘 (15)

What we are left with is a boundary for the noise level 𝑘 of 𝐶𝑘
in terms of the boundary value and other factors such that it will
guarantee 𝐶𝑘 to be greater than the threshold value.

(1 −𝐶ℎ)𝑠min
2𝑐

≥ 𝑘 ≥ 𝐶ℎ + log(𝑙)
log(𝐵(𝑛)𝛼 ) (16)

Please note that this is a sufficient but not necessary condition.

5 Detailed Proof Explanation

Figure 2: Example of partition for upper bound proof expla-
nation

Corollary 6.25 [7] which is essential for the upper bound has
a proof that is not well expanded on, therefore here we provide
a more detailed explanation of the proof and reasoning. We start
from the conclusion of 6.24 [7] which states the following:

Fix a nowhere-constant function 𝑓 and a noise level 𝑘 , and let 𝑦0
be the y-value such that 1/2 the probability mass of 𝐹𝑘 is above 𝑦0
and half is below it. Let 𝑙 (𝑓 , 𝑘) be the fraction of the unit interval on
which |𝑓 (𝑥) − 𝑦0 | ≤ 𝑘 . Then we have:

MIC(𝐹𝑘 ) ≥ 1 − 𝑙 (𝑓 , 𝑘) (17)

The proof of 6.24 which is relevant for 6.25 is directly copied
from the source: Draw a horizontal grid line at 𝑦 = 𝑦0. Every time 𝑓
enters or exits the strip [𝑦0 −𝑘,𝑦0 +𝑘], draw a vertical line. If the 𝑗-th
column of our grid has |𝑓 (𝑥) − 𝑦0 | > 𝑘 , then 𝐻𝑌

𝑗
(𝐹𝑘 |𝐺) = 0. On the

other hand, if it has |𝑓 (𝑥) −𝑦0 | ≤ 𝑘 , then we still have𝐻𝑌
𝑗
(𝐹𝑘 |𝐺) ≤ 1

because binary entropy never exceeds one. The result follows from
Lemma 6.3.[7]

Now from here, let 𝑐 be the number of intervals on which |𝑓 (𝑥)−
𝑦0 | ≤ 𝑘 , and let 𝑠min be the minimum slope of 𝑓 on those intervals.
In Figure 2, 𝑐 would be four and the intervals would be the first,
third, forth and fifth column. To clarify 𝑠min cannot be zero and the
aforementioned intervals are all the columns resulting from the grid
described in the proof of 6.24 who have a section of the function
𝑓 (𝑥) inside the strip [𝑦0 −𝑘,𝑦0 +𝑘]. We know that the equation for
slope is Δ𝑦/Δ𝑥 , where Δ𝑦 is the change in 𝑦 and Δ𝑥 is the change
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in 𝑥 . We can lower bound this fraction with the minimum possible
slope and rearrange giving:

𝑠min ≤ Δ𝑦

Δ𝑥
, Δ𝑥 ≤ Δ𝑦

𝑠min
(18)

Now consider that we will only apply the above to the columns
who have sections of the function 𝑓 within the strip [𝑦0 −𝑘,𝑦0 +𝑘].

The column’s boundaries are defined by when the function 𝑓

enters and exits the strip [𝑦0 −𝑘,𝑦0 +𝑘] therefore we can conclude
that Δ𝑦 will always be 2𝑘 , giving the following:

Δ𝑥 ≤ 2𝑘
𝑠min

(19)

An important clarification is that for the column to have non-
zero slope, its boundaries must be different. The function can either
enter from 𝑦 = 𝑦0 −𝑘 and exit at 𝑦 = 𝑦0 +𝑘 or enter from 𝑦 = 𝑦0 +𝑘
and exit from 𝑦 = 𝑦0 − 𝑘 . If the function enters and exits both from
𝑦 = 𝑦0 − 𝑘 (or 𝑦 = 𝑦0 + 𝑘) then at least a turning point must occur
within the strip [𝑦0 − 𝑘,𝑦0 + 𝑘] making the minimum slope zero.

An edge case to consider is the first column closest to the y axes.
If the function, starts in the strip and has nonzero minimum slope
then a problem occurs as we cannot guarantee Δ𝑦 will be 2ℎ. This
edge case can be easily resolved by just using an approximate slope
of the strip where we approximate Δ𝑦 to 2ℎ. The reason why this
does not affect the validity of the bound will be explained further
on. An example of this is shown in Figure 2.

Continuing with the explanation we now multiply both sides
by 𝑐 , the number of columns who have points within the strip
[𝑦0 − 𝑘,𝑦0 + 𝑘]. Resulting in the following:

𝑐 · Δ𝑥 ≤ 2𝑘
𝑠min

· 𝑐 (20)

Another important clarification is needed, the columns we con-
sider for 𝑠min are less than or equal in number to 𝑐 . This is because
for 𝑐 we consider columns who have pieces of 𝑓 (𝑥) that enter and
exit the strip on the same line and columns where 𝑓 (𝑥) is within the
strip and have a turning point inside the strip. We do not consider
these columns when finding 𝑠min.

Continuing with the proof we can now say the following:

𝑙 (𝑓 , 𝑘) ≤ 𝑐 · Δ𝑥 ≤ 2𝑘
𝑠min

· 𝑐 (21)

To explain this, consider what 𝑐 · Δ𝑥 and 𝑙 (𝑓 , 𝑘) means. 𝑙 (𝑓 , 𝑘)
is the percentage of 𝑥 points who have 𝑦 values inside the strip
[𝑦0 − 𝑘,𝑦0 + 𝑘]. If you visually highlight all the segments on the 𝑥
axis who have 𝑦 value in the strip, the ratio of all the highlighted
segments divided by the total length of the domain (which is one)
is equivalent to 𝑙 (𝑓 , 𝑘), since we assume the 𝑥 points are uniformly
distributed in the domain [0, 1]. Now consider what 𝑐 ·Δ𝑥 represents.
𝑐 is the total number of columns with function 𝑓 (𝑥) within the strip,
it can be essentially thought of as the number of visually highlighted
segments mentioned before. Now consider what Δ𝑥 is, this value
is connected to 𝑠min, the minimum possible slope. If every Δ𝑦 we
consider is of equal value i.e., 2𝑘 , then aminimum slope wouldmean
the same thing as the largest Δ𝑥 . Essentially, we are finding the
largest Δ𝑥 or in other words, the longest of the visually highlighted
lengths mentioned before and multiplying that by the total number
of lengths. This effectively upper bounds 𝑙 (𝑓 , 𝑘).

This provides us with corollary 6.25[7]:

MIC(𝐹𝑘 ) ≥ 1 − 2𝑘
𝑠min

· 𝑐 (22)

Now to explain why the approximation for Δ𝑦 used for the
edge cases mentioned above does not affect the validity, consider
the following scenario. Let the edge column be the column that
actually contains the minimum slope where the function 𝑓 starts
inside the [𝑦0 − 𝑘,𝑦0 + 𝑘] strip. By using 2𝑘 instead of a smaller
value and using the same minimum slope the value of the fraction
of 2k and minimum slope is larger than the actual value leading to
a slightly less tight lower bound. Although this makes the bound
less accurate it is still a valid lower bound.

6 Problems of Eq. (22) and Potential Solutions
Although the method and reasoning is clear, in actual practice the
utility of Eq. (22) and by extension the upper bound is limited.
There are two reasons for this, the first and the less significant one
is the relationship of 𝑆min, 𝑐 and 𝑘 . When rearranged into an upper
bound 𝑆min and 𝑐 are needed in order to obtain an upper bound for
𝑘 , however in practice to obtain 𝑆min and 𝑐 , 𝑘 needs to be a known
discrete value. Furthermore, because 𝑆min and 𝑐 depend on 𝑘 , using
different values of 𝑘 will produce different bounds when we only
want 𝐶ℎ (the user threshold value) to be influencing the bound.
This problem is not overly problematic and is resolvable with a few
more calculations. The inequality at equation (16) can still be used
to find the maximum noise level tolerated for the MIC score to be
above a certain user defined threshold. Simply keep increasing the
noise level until an equality is obtained.This provides the upper
bound as the equality indicates that if the noise level 𝑘 increases
anymore the minimum value of the MIC is no longer guaranteed.

The second problem however is far more troublesome as it is
linked to the inherent accuracy of the source equation used for
the upper bound. The accuracy of equation (22) is extremely low.
The lower bound is often far too low to be of any use and in some
cases is even negative. Naturally that would mean the upper bound
derived from it is even less accurate. The reason for its inaccuracy
is its usage of 𝑆min. As mentioned in section five 𝑆min is used to
lower bound the fraction Δ𝑦/Δ𝑥 and by extension the width or
Δ𝑥 of the column, however this lower bound is far too loose. For
most functions the width of each column is overestimated by a
significant amount when using 𝑆min as a lower bound. This results
in gross underestimates of the minimum MIC score.

It is also important to understand the cases when the lower
bound in Eq. (22) gives a negative value. This happens when part of
the lower or upper line of the strip [𝑦0 − 𝑘,𝑦0 + 𝑘] is outside the 𝑦
range of [0, 1], or when the median is too close to either 1 on 0. This
results in the width of columns being overestimated even more as
the Δ𝑦 value in Eq. (22) which is normally 2𝑘 is actually less than
that value, this is because the height of strip 𝑦 is less than 2𝑘 due
to part of the strip being outside the [0, 1] range of 𝑦. This results
in the fraction (2𝑘/𝑆min) · 𝑐 being larger than what it actually is
resulting in a more loose lower bound.

An example of such a case is with the function 𝑦 = 𝑥3. The
median is close to the x axis so adding even a small amount of
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noise will lead to a strip where 𝑦0 − 𝑘 is negative resulting in gross
negative underestimations.

A potential solution for the issue of 𝑆min is to use the average
gradient of the column rather than the minimum gradient. This
provides a significantly more accurate bound as the average gra-
dient is the exact ratio of the width of the 𝑦 strip divided by the
width of the 𝑥 column. This is because the average gradient in
this case is defined as the gradient of the straight line that is the
diagonal of the rectangle. Too elaborate, the rectangle mentioned
is formed by the intersection of the two vertical lines forming the
column’s edges and the two horizontal lines that are the y strips
boundary. By defining the average slope this way it becomes the
exact ratio of the rectangles height to width which is 2𝑘/Δ𝑥 . This
is still valid as an upper bound as we still pick the smallest average
gradient. When using the minimum slope we find the column with
the largest 𝑥 width and use a width larger than this value for all
the columns. However, using the average slope, we find the column
with the largest width and use that exact width for all the other
columns, effectively upper bounding the total column width while
being more accurate.

This change also better navigates the two edge cases mentioned
previously. The first edge case was if the function starts in the
strip so that using the value of 2𝑘 becomes an overestimate. The
average slope deals with this perfectly as it only uses the gradient
of the rectangles diagonal which already assumes the height of the
rectangle is 2𝑘 , so that ratio of 2𝑘 and average slope is exactly the
columns width.

The second edge case was considering when the function had
a turning point within the median 𝑦 strip. The minimum slope
method could only ignore these columns as they may generate a
minimum slope of zero. The average slope method is able to utilize
these columns in contrast. Since the slope is not dictated by the
shape of the function inside the rectangle, only the rectangle itself
it will never have a slope that is zero. This potentially allows the
average slope method to have more accurate bounds.

A potentially even better method is to simply find the average
gradient for each column and use that to bound instead. This results
in each column using its own exact 𝑥 width rather than an upper
bound, giving an even tighter upper bound. The equation for such
a bound would be as follows:

MIC(𝐹𝑘 ) ≥ 1 − 2𝑘
𝑐∑︁
𝑖=0

1
𝑆avg,𝑖

(23)

where 𝑆avg,𝑖 is the average slope of the 𝑖th column.
In practice it may not be as effective. Functions which result in

low numbers of columns like the exponential function or linear
function will not be affected at all. This is because one method
uses exact column widths while the other one uses a single column
width for all columns, when there is only one column there is
no difference. Furthermore functions like sin that will likely have
identical columns will also be unaffected since the average slope
for one column would be the average slope for all columns. This
equation could potentially give a tighter result in cases where the
function has many columns that are not uniform.

7 Proposition proof
To prove both proposed equations, proving the more accurate one
first, we start at Eq. (22):

MIC(𝐹𝑘 ) ≥ 1 − 2𝑘
𝑠min

· 𝑐 (24)

From Eq. (21), we know that 𝑙 (𝑓 , 𝑘) is less than 2𝑘
𝑠min

· 𝑐 , so we
have the following:

MIC(𝐹𝑘 ) ≥ 1 − 𝑙 (𝑓 , 𝑘) ≥ 1 − 2𝑘
𝑠min

· 𝑐

𝑙 (𝑓 , 𝑘) is equivalent to the exact percentage of points within
the strip [𝑦0 − 𝑘,𝑦0 + 𝑘] and therefore on a domain of [0, 1] with
uniformly distributed 𝑥 values, it can be approximated as the sum
of the widths of the columns that have |𝑓 (𝑥) − 𝑦0 | ≤ 𝑘 .

To represent this in terms of slope and 𝑘 , we define an average
slope 𝑆avg,𝑖 . The way this is calculated is by getting the slope be-
tween the two opposite points of the rectangle formed by the lines
𝑦 = 𝑦0 − 𝑘 , 𝑦 = 𝑦0 + 𝑘 , 𝑥 = 𝑥𝑖 and 𝑥 = 𝑥𝑖+1, where [𝑥𝑖 , 𝑥𝑖+1] are the
𝑥-boundaries of the column. The points in question are (𝑦0+𝑘, 𝑥𝑖+1)
and (𝑦0 − 𝑘, 𝑥𝑖 ). This creates a slope 𝑆avg,𝑖 such that:

𝑆avg,𝑖 =
(𝑦0 + 𝑘) − (𝑦0 − 𝑘)

𝑥𝑖+1 − 𝑥𝑖
=

2𝑘
width of the ith 𝑥-column

(25)

width of ith 𝑥-column =
2𝑘

𝑆avg,𝑖
(26)

The summation of the widths of the columns, as mentioned
before, is approximately 𝑙 (𝑓 , 𝑘). Therefore, the sum of the width of
each column can be represented as follows:

𝑙 (𝑓 , 𝑘) = 2𝑘
𝑐∑︁
𝑖=0

1
𝑆avg,𝑖

(27)

Substituting 𝑙 (𝑓 , 𝑘) gives the following:

MIC(𝐹𝑘 ) ≥ 1 − 2𝑘
𝑐∑︁
𝑖=0

1
𝑆avg,𝑖

(28)

This proves the more accurate of the two proposed equations.
Now define a new slope 𝑠avg where it is the smallest of all 𝑆avg,𝑖 . To
prove the more general equation where 𝑠min is replaced with 𝑆avg,
we start with the following inequality:

𝑠min ≤ 𝑠avg ≤ 𝑆avg,𝑖 (29)

This naturally holds for all 𝑖 as 𝑠min is the smallest possible slope
across every column, whereas 𝑆avg,𝑖 is the average slope of the 𝑖th
column.

1 − 2𝑘
𝑠avg

· 𝑐 ≥ 1 − 2𝑘
𝑠min

· 𝑐 (30)

As 𝑠avg ≤ 𝑆avg,𝑖 , we have the following:

1 − 2𝑘𝑐
𝑠avg

≤ 1 − 2𝑘
𝑐∑︁
𝑖=0

1
𝑆avg,𝑖

(31)

And therefore:

1− 2𝑘𝑐
𝑠min

≤ 1− 2𝑘𝑐
𝑠avg

≤ 1−2𝑘
𝑐∑︁
𝑖=0

1
𝑆avg,𝑖

= 1−𝑙 (𝑓 , ℎ) ≤ MIC(𝐹𝑘 ) (32)
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Figure 3: MIC, Correlation coefficient on different functions of various noise levels.

1 − 2𝑘𝑐
𝑠avg

≤ MIC(𝐹𝑘 ) (33)

Since 1 − 2𝑘𝑐/𝑠avg is between two valid lower bounds, it is also
proved to be a valid lower bound. It is also a better lower bound
than 1 − 2𝑘𝑐/𝑠min, illustrating that using 𝑠avg yields a better bound
than 𝑠min. Eq. (28) in theory is a more tight bound than Eq. (33),
however in practice this only applies if the number of columns 𝑐 is
very high or the widths of these columns vary greatly. For most
common functions this is not the case and so we choose to use Eq.
(33) as it is cleaner and simpler to calculate.

8 Experimental Validations
Figure 3 depicts six different functions across six rows: a cubic
polynomial, a circle centered at (0.5, 0.5) with radius 0.5, a sine
function, a logarithmic function, an exponential function shifted
down one unit, and a tangent function.

The figure demonstrates that as the noise level increases from
0.01 to 0.1 to 0.3, the MIC score decreases uniformly for most
functional relationships. The circle function however, consistently
shows a lower MIC score of 0.6 even with minimal noise, contrast-
ing with other functional relationships. This discrepancy agrees
with the source text in that the MIC is only equitable for functional
relationships, not necessarily for non functional relations.

Figure 4 offers a detailed analysis of noise level versus MIC score
using the same functions as Figure 3, confirming the trend observed
in Figure 3. MIC decreases uniformly with increasing noise levels
across most relationships. Notably, the tangent function consis-
tently displays a higher MIC score compared to other functional
relationships, marking it as an outlier. Additionally, the graphs of
exponential, sine, and logarithmic functions appear remarkably
similar, with their MIC scores differing by at most 0.1 across the
three noise levels examined. The polynomial graph is also relatively
similar although that is seen only in shape and less in the data of
Figure 3.

Figure 5 presents the correlation coefficient scores plotted against
noise levels. Similar to MIC, the correlation coefficient uniformly
decreases with increasing noise. However, it has a consistently low
score for non linear relationships such as sin, tangent and circular.
This reaffirms its inability to detect nonlinear relationships. This
figure reinforces the findings from MIC analysis. It indicates that
MIC and correlation coefficient metrics align in their observations
of functional linear relationships amidst varying noise levels but
differ on non linear or non functional relationships.

Figure 6 and 7 depict comparisons of three different MIC lower
bounds to the actual MIC noise relationship. As stated in the legend,
the blue line is the original lower bound provided by the source
work which utilizes the minimum slopes of the column as a lower
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Figure 4: MIC score against noise level across different functions.

bound. The yellow line is the proposed improvement. Instead of
using the smallest slope the average slope is used. The green line
is a similar method that is slightly more accurate. Instead of using
the smallest of all the average slopes, the exact average slope for
each column is used.

Observing Figure 6 it can be seen that the green and yellow
line are consistently above the blue line. This validates the claim
that using the average slope instead of the minimum slope will
consistently produce more accurate lower bounds for the MIC.
Looking closer at Figure 6, the sin function graph illustrate a small
detail. The green line is slightly above the yellow line. What this
means is that the green line is a slightly tighter upper bound than
the yellow line. This agrees with predictions as the green line is
the lower bound using the more accurate summation of all average
slopes corresponding to Eq. (28) whereas the yellow line utilizes
the minimum average slope corresponding to Eq. (33). The fact that
this discrepancy between these two measures appeared in the sin
function also agrees with predictions. Eq. (28) will only distinguish
itself with Eq. (33) when the function results in multiple columns.
The sin function will intercept the median strip multiple times
creating multiple columns validating the prediction.

As shown in Figure 7, the tangent graph further validates this
claim. The green line in this graph is also slightly above the yellow
line illustrating how Eq. (28) is slightly more accurate than Eq. (33).

The tangent functions shape also intersects the median strip multi-
ple times creating multiple columns. This confirms the prediction
that Eq. (28) is more accurate when multiple columns are formed.

Every other graph in Figure 6 and Figure 7 show the green and
yellow line being identical. All of these functions also happen to
only intersect the median strip once forming a single column. This
validates that the previous predictions contrapositive is also true.
If multiple columns are not formed, then Eq. (28) is not anymore
accurate than Eq. (33).

Observing both Figure 6 and 7 all the lower bounds except for
the circle function are valid, in that they are not above the red line.
Both the original lower bound and the improved method are above
the red line indicating the lower bound is above the actual value.
This implies this method of lower bounding does not work for non
functional relationships. This agrees with the source report as it is
defined only to work for a nowhere constant function.

Despite the fact the accuracy of the improved method is consis-
tently higher than the original method using the minimum slope,
the accuracy of the lower bound is still disappointingly inconsistent.
This is partly due to the fact the original lower bound was already
widely inconsistent. Through theory and data observation, a key
observations about factors that influence the effectiveness of the
lower bound can be made.
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Figure 5: Correlation coefficient against noise level across different functions.

The observation comes from comparing the exponential and
logarithmic function. The logarithmic function has a worse lower
bound in that it becomes negative relatively quickly. The exponen-
tial functions lower bound is able to follow the actual value with
higher degrees of accuracy for longer. This discrepancy is due to
the distribution of points. The median value for the exponential
function is much closer to 0.5 (the middle) than the median value for
the logarithmic function. The consequence of this is the exponential
function can withstand more noise level before the median strips
range is outside the y range of [0,1]. The logarithmic functions
median strip in contrast, will be outside the y range of [0,1] with
lower noise levels. Once the median strips range is outside the [0,1]
y range, the values of column width begin to be grossly overes-
timated. The height of the median strip is no longer 2k but less,
resulting in the lower bound being less accurate, as the fraction to
be subtracted is larger than it should be. So to summarise, functions
whose median is close to 0.5 will likely have better lower bounds.

More critical readers may notice that the sin function directly
contradicts this statement as theymay assume themedian is close to
0.5 however Figure 6 shows it does not perform well. The function
used however had a period of pi/5 so the median is closer to 0.7.
Furthermore the tangent function can be seen as the strongest
evidence backing this claim. The tan function has the best lower

bound out of all six function. Due to its unique shape, its median is
extremely close to 0.5 when the period is set to pi/10.

9 Related Work
MIC has garnered significant attention within the realm of data
analysis due to its effectiveness in detecting and quantifying a
diverse range of relationships. MIC has been employed in various
domains, ranging from bioinformatics to financial data analysis,
where its ability to uncover complex dependencies has proven
invaluable.

Despite the extensive application and theoretical developments
surrounding MIC, there exists a relative dearth of research that
focuses explicitly on the impact of noise on its performance and
reliability. While noise is a ubiquitous component in real-world
datasets and known to affect the accuracy and interpretability of
statistical measures, studies investigating how different levels and
types of noise influence the MIC remain limited. This gap in knowl-
edge hinders a comprehensive understanding of MIC’s resilience
under noisy conditions and its optimal usage in practical scenarios
where noise is inevitable.

There lies a clear need for further exploration into the relation-
ship between MIC and noise. There is need to ascertain the best
practices for mitigating noise-induced biases, refining MIC-based
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Figure 6: Comparisons of different MIC score lowerbounds to actual MIC score.

Figure 7: Comparisons of different MIC score lowerbounds to actual MIC score.
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methodologies, and guiding researchers and practitioners in lever-
aging MIC more effectively in noisy data environments.

10 Conclusions
This study embarked on a comprehensive exploration of the intri-
cate relationship between statistical measures of association and
the presence of noise in datasets, focusing on correlation coeffi-
cients and the Maximum Information Coefficient (MIC). By inte-
grating theoretical frameworks with empirical assessments, this
paper aimed to decipher the impact of noise variability on the
trustworthiness and interpretation of these measures.

Through a parallel methodology entailing mathematical model-
ing and experimental evaluations, the study elucidated the manner
in which different noise intensities influence the estimation and un-
derstanding of MIC. The combination of theoretical deduction and
practical substantiation provided a holistic view of MIC’s resilience
under noisy conditions.

The culmination of these efforts allowed for a significant im-
provement on a previous lower bound. This improvement is shown
to be consistently more tight and able to manage edge cases better.
Although not shown in this report this improvement could poten-
tially significantly increase the accuracy of other results that utilize
this inequality as the form of the inequality is relatively unchanged.
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