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Abstract
Conditional branch prediction remains a crucial technology for
modern high-performance processors. A substantial portion of mis-
predictions arise from data-dependent branches. Although various
mechanisms targeting data-dependent branches have been pro-
posed, none were employed in previous championships. To address
this, we implemented a Load Value Correlated Predictor (LVCP)
that leverages prior load data values to improve the predictability
of hard-to-predict branches. Additionally, we incorporated several
techniques introduced since the last championship. The resulting
LVC-TAGE-SC-L achieved 3.372 branch mispredictions per kilo
instructions (BrMisPKI) and 144.076 cycles on wrong path per
kilo instructions (CycWpPKI) across 105 training traces, operat-
ing within a 192 KB storage budget. This performance represents a
2.07% reduction in branch mispredictions compared to the baseline
predictor.

1 Introduction
As a cornerstone of modern high-performance processors, the
branch predictor is becoming increasingly important due to the
rising penalty of mispredictions in deeper and wider pipelines.
Enhancing branch prediction accuracy offers a relatively straight-
forward approach to improving performance while simultaneously
reducing energy consumption.

Prior research into branch prediction primarily focused on utiliz-
ing past branch history. Since 2006, research in branch prediction
has progressed very slowly. The TAGE predictor [15] has already ex-
celled in storage efficiency, and all the following branch prediction
championships were won by TAGE-based predictors [11–13].

However, branch history is not the only source of information
available to the processor for branch prediction. Various types of
execution context can also be used, including load addresses, load
values, and register contents. For certain hard-to-predict branches,
relying solely on historical patterns is ineffective, since branch
history alone struggles to distinguish between disparate execution
contexts that share the same recent branch patterns.
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The load values, as a specific aspect of the execution context, can
directly influence or even determine the outcome of subsequent
branches in certain scenarios. A prominent example is the exit
condition of loops with dynamically determined iteration counts.
While challenging for history-based predictors like TAGE due to
their noisy patterns, these branches are often accurately predictable
by observing the value loaded into the loop’s iteration counter.

Building on this observation, this paper proposes LVC-TAGE-
SC-L, which augments TAGE-SC-L with a Load Value Correlated
Predictor. This proposed predictor is more capable of predicting
load-dependent hard-to-predict (H2P) branches than the baseline
TAGE-SC-L predictor. Section 2 provides a historical context for
the TAGE predictor and previous research on load-dependent pre-
dictions. Section 3 will describe the proposed predictor in detail,
including:

• a load tracking mechanism that allows each branch to obtain
previous load information.

• a correlation table and its training algorithm to capture the
correlation between the load-dependent branch and its pre-
decessor load.

• several new features used in the Statistical Corrector.
Finally, Section 4 provides an experimental evaluation of our

proposed predictor, and Section 5 briefly discusses other findings
during the championship.

2 Related Work
2.1 TAGE Variant
TAGE has long been the most accurate branch predictor since it was
proposed in CBP-2 [15]. Then various improvements were made
by André Seznec during the next several CBPs, including adding
a loop predictor to handle loop exit branches [10], adding an O-
GEHL-based statistical corrector to deal with branches that are not
well correlated with specific history patterns but present statistical
bias [11]. Other techniques such as table sharing and partial associa-
tivity are also applied [12], forming the winner TAGE-SC-L in CBP-
5 [13]. After that, Pierre Michaud proposed BATAGE to mitigate the
“cold counter problem” [7]. Seznec proposed a hardware-friendly
TAGE-SC in 2024 [14].

2.2 Load-Correlated Prediction
Load-correlated branch prediction techniques leverage informa-
tion from load instructions to enhance branch outcome predic-
tion [1, 3, 4]. Early approaches typically relied on the value of a
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Figure 1: Load Value Correlated Predictor with TAGE-SC-L

load instruction located at a fixed distance before the branch [1, 4].
Alternatively, using the load address—available earlier than the
corresponding data value has been proposed to reduce prediction
latency [3]. A key challenge for value-based prediction arises when
a subsequent store modifies the expected load value, resulting in
mispredictions. To address this issue, active update mechanism that
leverage store values to update predictor state has been proposed [1].
In addition, complementary techniques such as pre-executing hard-
to-predict branches has also been explored to improve prediction
accuracy [2, 8, 18].

3 Structure Design
Our proposed LVC-TAGE-SC-L predictor consists of four parts:
TAGE, Multiperspertive Statistical Corrector (MPSC), Loop Predic-
tor and Load Value Correlated Predictor (LVCP). A block diagram
of the relationship between the components is shown in Figure 1.

The TAGE component and the Loop Predictor are based on the
CBP-5 implementation by Seznec [13], with only minor parameter
tuning to satisfy storage constraints. TheMPSC component incorpo-
rates features such as the per-set history and the regional IMLI, in-
spired by techniques developed since the last championship [6, 14].
The Load Value Correlated Predictor (LVCP) is designed to cap-
ture load-branch correlations through a dedicated load tracking
structure and a correlation table. A separate H2P branch table is
employed to determine whether a branch is sufficiently hard to
predict to warrant the use of LVCP. A detailed discussion of its
operation is provided in Section 3.3.

At prediction time, all predictor components are accessed in
parallel, and the final prediction is selected based on a hierarchical
decision process. If the branch is identified as a hard-to-predict
(H2P) branch and the Load Correlation Table yields a hit with a
saturated confidence counter, the prediction from the Load Value
Correlated Predictor (LVCP) is used. If this condition is not met

but the Loop Predictor provides a prediction with saturated confi-
dence, its result is adopted. In all other cases, the prediction from
TAGE-SC is used, following the same logic as in the CBP-5 imple-
mentation [13].

After the prediction is completed, the load tracking queue is up-
dated with potential load instructions. The detailed update logic is
described in Section 3.3. Some of the SC histories are speculatively
updated (mimic a speculative-update-mispredict-rollback mecha-
nism in the championship). See Section 3.4 for detailed discussion
on the update mechanism of SC components.

TAGE-SC-L is updated at execution resolve time to allow for a
more timely update. LVCP is updated at commit time since LVCP
needs an accurate order between branches and loads.

3.1 H2P Branch Table
AH2P Branch Table (HBT) is used to determine whether a branch is
hard enough for any allocation in the LVCP. HBT is a small register-
file-based set-associative table that is PC-indexed and tagged. There
is a saturation counter in each entry that increases when a branch
is mispredicted by TAGE-SC-L. When the counter saturates, the
branch is considered hard to predict.

When a branch mispredicts, HBT tries to allocate a slot for it
if any counter in the same set is zero. The counter decays with a
certain period. In our case, the decay period is set to 20000 branches
committed. Since the average branch per kilo instruction (BPKI) is
131.60 across the traces, the HBT tracks the branches whose MPKI
is greater than 0.38. This should be enough to cover most of the
hard-to-predict branches.

3.2 Load Tracking Structure
The load tracking structure is responsible for tracking the positional
relationship between branches and preceding loads. Fig. 2 shows the
specific load tracking structure used in the Load Value Correlated
Predictor.

Before predicting a branch, information about loads preceding
it enters a load tracking queue. Once a tracked load instruction
completes execution, its value is updated in the corresponding
entry within the load tracking queue. The load values stored in the
queue are later used to index a banked correlation table, leveraging
a one-to-one mapping between each queue position and a specific
table bank. The size of the load tracking queue is limited (16 in our
case) primarily to keep the number of SRAM banks required for
the correlation tables reasonable.

However, a significant amount of load-branch dependencies can
occur over distances exceeding the capacity of this limited queue.
To capture some of these long-distance dependencies, a distant
load buffer, indexed by the load PC low bits, is employed. When
a load instruction is dequeued from the load tracking queue, it is
transferred to this distant load buffer. Values within the distant load
buffer are also used later to query the correlation tables, similar
to the values in the load tracking queue. The distant load buffer
entries are directly mapped to the correlation table banks.

To allow the detection of load instructions at prediction time,
a small set-associative SRAM table, termed the Load Marking Ta-
ble, is employed. Each entry within this table contains a bitmap
indicating the presence and positions of load instructions within a
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Figure 2: Load tracking structure including a load marking
table, a load tracking queue, and a distant load buffer

corresponding cache line. Entries also include a useful counter used
for replacement policy. This useful counter is incremented when-
ever a load instructionwhose address maps to that entry contributes
to a correct load-correlated prediction, particularly those that cor-
rect errors from the baseline predictor (TAGE-SC-L). To prevent
stale information from persisting indefinitely, these counters are
gradually decayed over time. The bitmaps themselves are populated
during the decode stage upon the detection of load instructions.

3.3 Load Value Correlated Predictor
The core of the Load Value Correlated Predictor is a set-associative
SRAM-based correlation table. For lookup, it uses a hash computed
from the branch PC, load PC, and load value, which serves as both
the index into the set and the tag for matching entries. Each entry
in the correlation table stores a payload consisting of: a direction
bit, a 5-bit confidence counter, and a 1-bit direction-changed marker
used for invalidation.

When predicting a branch, the predictor retrieves load PC and
load value information from both the load tracking queue and the
distant load buffer. This branch’s PC, the retrieved load PC, and the
load value are then hashed to calculate the set index and the tag
used to access the correlation table. If multiple load candidates are
available from the load tracking queue, the predictor selects the
prediction from the youngest load with saturated confidence. For
candidates found in the distant load buffer, the predictor selects the
entry that has the smallest index and saturated confidence. When
both information from the load tracking queue and the distant load
buffer can provide prediction, the prediction from load tracking
queue is used for more timely information.

In the training procedure, new correlation table entries are al-
located under the following conditions: 1) the branch is classified
as hard-to-predict (H2P), and 2) the overall predictor (e.g., TAGE-
SC-L plus LVCP components) mispredicts. The allocation policy
searches for candidates containing entries marked as not useful
(i.e., their useful counter is zero). Multiple entries may be allocated
to potentially speed up the training procedure. To retain the most
critical correlation entries, a 2-bit useful counter is associated with
each entry. This counter is incremented when the baseline predictor
(TAGE-SC-L) mispredicts but the load-correlated entry provides the
correct prediction. When allocation fails because no table contains
unused entries (i.e., all applicable entries are marked as useful), a

Figure 3: Branch IMLI and Target IMLI

probabilistic decay mechanism is employed where useful counters
in all the tables are decremented with a small probability (controlled
by an LFSR random number generator). A single load-dependent
branch instance can often be correlated with multiple preceding
loads. To optimize storage and prioritize the most effective corre-
lations, if one entry providing a correct prediction for a branch
instance reaches saturated confidence, the useful counters of other
entries potentially correlating with the same instance are reset to
zero. This mechanism encourages keeping only one provider for a
given context, freeing space for other branches or contexts.

Whenever the correct branch direction differs from the direction
stored in a correlation table entry, the entry’s direction-changed
bit is set. Once this bit is marked, the entry becomes invalid and
will no longer participate in prediction or training processes. This
mechanism helps prevent the predictor from using stale or incorrect
historical correlations, thus reducing mispredictions.

To conserve storage, the load information from the tracking
queue and the distant load buffer share the same correlation ta-
ble storage. This requires dual-port SRAM or fine-grained SRAM
banking in real hardware implementation.

3.4 Multiperspective Statistical Corrector
The Multiperspective Statistical Corrector (MPSC) is derived from
the GEHL predictor by Seznec [9] and Multiperspective Perceptron
Predictor by Jiménez [5]. It follows Seznec CBP-5 submission for
dynamic threshold and weight.
Bias TAGE are known to predict some biased branches poorly
[11]. Three bias tables indexed by different strategies are used,
which is the same as the CBP-5 winner.
Global History Three global history tables are also used as in
[11–13]. The global history tables are shared with the IMLI tables.
When each of the three IMLI counters is non-zero, IMLI counter
will be used instead to access the table.
Local History 32 per-address and 16 per-set [19] history are
used. These local histories are speculatively updated, as they are
small.
Path History IMLI-filtered backward history [14] and normal
global forward history are used. These histories are also specula-
tively updated.
IMLI IMLI is short for Inner-Most Loop Iteration counter [16].
IMLI and IMLI-OH feature are used in our predictor. IMLI is reengi-
neered to branch IMLI (brIMLI) and target IMLI (tarIMLI), which
helps with multiexit loop [14]. Figure 3 shows the definition of
the two new IMLI. A forward target IMLI is also used to capture
some reverse loop [5]. IMLI counter is speculatively updated and
checkpointed to ensure accurate tracking. However, IMLI-OH table
is updated at execution resolve to avoid checkpointing. IMLI-OH
update does not need to be very timely according to [16].
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4 Experimental Results and Analysis
We evaluate our proposed LVC-TAGE-SC-L on the CBP simulation
framework across 105 provided traces. We compare our proposed
predictor with two different configurations of the original TAGE-SC-
L. There are two key differences between these two configurations,
which are 1) the number of local history entries: “unreal” has
2048 entries while “realistic” has only 48 entries; 2) when to update
the IMLI-OH components of the statistical corrector: “unreal”
updates at prediction time while “realistic” updates at execution.
The “unreal” configuration generally corresponds well to the CBP-5
version. Both configurations are tuned to the 192KB budget. For
rationality of selecting such a baseline, see discussions in Section 5.

Table 1 shows the branch mispredictions per kilo instructions
(BrMisPKI) and cycles on wrong path per kilo instructions (CycW-
pPKI) compared to the baseline TAGE-SC-L. The proposed predictor
assigned 173.19KB storage to TAGE-SC-L and 18.7KB to LVCP. For
detailed storage cost analysis, see Appendix A. Evaluation results
show that the proposed optimized TAGE-SC-L configuration retains
most of the performance benefits of an idealized local history setup
while requiring significantly less storage. Moreover, by integrating
the Load Value Correlated Predictor, the overall predictor achieves
a 2.07% reduction in BrMisPKI compared to the baseline predictor
at equivalent storage capacity.

Table 1: Average BrMisPKI and CycWpPKI on all traces

Predictor BrMisPKI CycWpPKI Rdc.
192KB realistic TAGE-SC-L 3.444 145.647 -
192KB unreal TAGE-SC-L 3.421 145.181 0.66%
173KB our TAGE-SC-L 3.428 145.436 0.45%

192KB TAGE-SC-L w/ LVCP 3.372 144.076 2.07%

Detailed BrMisPKI improvements over the baseline are shown
in Figure 4. The proposed predictor yields significant BrMisPKI
reductions on infrastructure (4.57%), floating point (3.42%), and
integer (1.89%) workloads. Performance on media workloads, how-
ever, presents a different picture. While a predictor using an unre-
alistic amount of local history significantly reduces BrMisPKI on
it, neither our proposed TAGE-SC-L nor the baseline TAGE-SC-L
achieves a comparable reduction in this category.

Figure 5 shows a feature contribution analysis result of each
feature used in LVCP and SC (except for Bias in SC). The BrMisPKI
reduction is obtained by disabling each feature in both predicting
and training (no extra storage added to other components). The
result shows that LVCP contributes to 0.05 BrMisPKI reduction,
which is the most effective feature. Total BrMisPKI reduction of all
the features in Figure 5 is 0.156 (4.6%).

5 Discussions
5.1 Local History Usage
Local history is known to significantly improve branch prediction
accuracy across various predictor designs, including GShare pre-
dictors, TAGE, and perceptron predictors. For example, the CBP-5
winning TAGE-SC-L predictor utilizes a large 1024-entry local his-
tory table [13]. This allows for significant misprediction reduction
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on certain workloads (e.g., media workloads, as shown in Figure
4). However, accurately maintaining such an amount of local his-
tory is impractical in modern deep and wide processors. Although
techniques like partial restoration have been proposed to address
this challenge [17], our design opts for a smaller number of local
history entries. We find that by combining this limited local his-
tory with per-set history and IMLI, the majority of the prediction
accuracy benefits that a large local history table brings can still be
attained. Furthermore, checkpointing these histories for specula-
tion management remains well within acceptable power and area
limits (under 1Kbits per fetch block, or roughly 10KB total for the
whole processor).

5.2 Timeliness
While exploring the predictability potential, we found that more
than 20% of the mispredicted branches actually correlate well with
specific fixed load values prior to the branch. However, these load
values come too late to be used at the time when the correlated
branches are actually predicted. In the CBP framework, the predic-
tion of a certain branch can happen only once. But in real processors,
the prediction made by the main predictor can possibly be corrected
before the branch reaches the execution stage. During that period,
if the corresponding load values are ready, the pipeline can re-steer
earlier, thus reducing cycles the processor spends on wrong path.
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6 Conclusions
Unlike prior research that primarily focuses on branch history, this
work investigates a branch prediction mechanism based on load
tracking and load-value correlation, leveraging the execution con-
text of load instructions. Although this is an initial exploration, we
hope it will motivate further research into load-based correlations
and the broader utilization of diverse processor contexts to enhance
prediction accuracy.

Although our proposed techniques successfully achieve a Br-
MisPKI reduction over the baseline predictor, we identified two
primary areas for future improvement. Firstly, the current load
tracking mechanism is relatively complex. Secondly, the storage
requirements for the load correlation table are substantial. Con-
sequently, promising avenues for future work include developing
smarter mechanisms for utilizing load information and improving
the overall storage efficiency of the predictor.
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A Cost Analysis
pred_time_histories

GHIST 64 bits
phist 64 bits
ptghist 12 bits

tage_index ch_i 11 × 30 bits
tage_tag ch_t (10+11) × 9 + (13+14) × 21 bits

per_set_local_history 16 × 14 bits
local_history 32 × 11 bits

ltable 32 × 14 bits
WITHLOOP 7 bits
last_back_br 64 bits

last_forward_br_target 64 bits
last_back_target 64 bits

brIMLI 10 bits
brIMOH 10 bits
tarIMLI 10 bits
tarIMOH 10 bits
fwdtarIMLI 10 bits

forward_path_history 11 bits
filtered_backward_path_history 11 bits

TOTAL 2521 bits
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Component Details of field Cost
TAGE

gtable(low)
ctr: 3 bits
tag: 11 bits
useful 1 bit
9 tables × 2048 entries

33.75 KB

gtable(high)
ctr: 3 bits
tag: 14 bits
useful 1 bit
21 tables × 2048 entries

94.5 KB

use_alt_on_na 5bits, 16 entries 80 bits
active_hist.ghist 3000 bits 0.366 KB
active_hist.phist 27 bits 27 bits

TICK 10 bits 10 bits
btable pred: 1 bit × 128K

hyst: 1bit × 32K
20 KB

Loop Predictor

ltable

NbIter: 14 bits
confid: 4 bits
CurrentIter 14 bits
TAG: 20 bits
age: 4 bits
dir: 1 bit
64 entries

0.445 KB

Statistical Corrector
updatethreshold 12 bits 12 bits
Pupdatethreshold 8 bits, 128 entries 0.125 KB
Bias (Bias, BiasSK,

BiasBank) 7 bits, 3 × 1024 entries 2.625 KB

Global history
(GGEHLA, PGEHLA)
3 history lengths

7 bits, 2 × 3 × 1024
entries 5.25 KB

Local history
(PSGEHLA,

LGEHLA) 2 history
lengths

7 bits, 2 × 2 × 1024
entries 7 KB

Local history
registers 11 bits × 32 entries 352 bits

Per-set history
registers 14 bits × 16 entries 224 bits

IMLI-OH
(SCTARIMOHA,
SCBRIMOHA) 2
history lengths

7 bits, 2 × 2 × 1024
entries 3.5 KB

IMLI-OH
(SCTARIMOH_Hist,
SCBRIMOH_Hist)

10 bits, 2 × 1024 entries 2.5 KB

SCFWDA 7 bits, 2 × 1024 entries 1.75 KB
SCBKDA 7 bits, 3 × 512 entries 1.31 KB

Weights (WG, WL,
WP, WbrIMLI,
WtarIMLI,

WfwdbrIMLI,
WIMOH, WILIPath,

WB)

6 bits, 8 entries 432 bits

FirstH 7 bits 7 bits
SecondH 7 bits 7 bits

Component Details of field Cost
HardBranchTable

_table tag: 23 bits
ctr: 5 bits
128 entries

1.078 KB

replacer 8× 16× (16− 1)/2 = 960
bits 0.117 KB

retired_branches 15 bits 15 bits
CorrelationTable

_tables

valid: 1 bit
tag: 16 bits
dir: 1 bit
dir_changed: 1 bit
dir_conf: 5 bits
useful: 2 bits
16 tables × 256 entries

13 KB

lfsr 32 bits 32 bits
_replacer 2048 bits 0.25 KB

LoadValueCorrelatedPredictor
pred_prev_

taken_br_info
pred_prev_br_info

id: 10 bits
br_pc: 64 bits
target: 64 bits

276 bits

pred_load_queue

id: 10 bits
pc: 32 bits
prev_taken_br_id: 10 bits
load_value: 32 bits
16 entries

0.164 KB

distant_load_buffer
id: 10 bits
pc: 32 bits
load_value: 32 bits
16 entries

0.145 KB

commit_load_queue,
commit_distant
_load_buffer

id: 10 bits
pc: 32 bits
16 entries

0.164 KB

load_marking_table
tag: 16 bits,
bitmap: 16 bits
useful: 3 bits
1024 entries

4.375 KB

load_inst_num 14 bits 14 bits
decay_lmt_idx 7 bits 7 bits

lfsr 32 bits 32 bits

TOTAL 191.96
KB
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