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Abstract Data access delay has become the prominent performance bottleneck of high-end computing systems. The key

to reducing data access delay in system design is to diminish data stall time. Memory locality and concurrency are the two

essential factors influencing the performance of modern memory systems. However, existing studies in reducing data stall

time rarely focus on utilizing data access concurrency because the impact of memory concurrency on overall memory system

performance is not well understood. In this study, a pair of novel data stall time models, the L-C model for the combined

effort of locality and concurrency and the P-M model for the effect of pure miss on data stall time, are presented. The

models provide a new understanding of data access delay and provide new directions for performance optimization. Based

on these new models, a summary table of advanced cache optimizations is presented. It has 38 entries contributed by data

concurrency while only has 21 entries contributed by data locality, which shows the value of data concurrency. The L-C and

P-M models and their associated results and opportunities introduced in this study are important and necessary for future

data-centric architecture and algorithm design of modern computing systems.
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1 Introduction

The term “memory wall” was introduced by Wulf

and McKee in 1994[1]. During the last two decades,

processors have advanced from in-order to out-of-order

and from uni-core to multi-core; memory systems

have advanced with many concurrency-oriented fea-

tures such as multi-port, multi-banked, pipelined and

non-blocking cache. Moreover, data intensive applica-

tions have become common in diverse fields such as

bioinformatics, computer aided design, and complex so-

cial media interactions[2-3]. Compared to 20 years ago,

the landscape of computing has changed.

Data stall time is the time CPU waiting for data.

Many factors can cause data stall, including data access

delay, branch, control, and data dependencies. Data

stall time contributes 50% to 70 % of the total applica-

tion execution time and is the most prominent perfor-

mance bottleneck of computing systems[4-5]. Memory

wall compounded with the drastic increasing of data in-

tensive applications makes data access delay the lead-

ing performance bottleneck of high-end computing. For

this reason, intensive research has been conducted by

various researchers in recent years to reduce data stall

time. The major results have been summarized by Hen-

nessy and Patterson in [6]. However, existing studies

are mostly focused on one aspect of data stall time re-

duction and data locality. Although researchers have

realized the importance of memory concurrency[7-9],

there is no good understanding on utilizing data con-

currency for the overall system performance.

From a hardware perspective, concurrency is al-

ready available in modern memory systems, such as in

each memory clock cycle, multiple accesses may be is-

sued. As a result, many accesses may co-exist in the

same cycle. Memory access concurrency also exists at

each level of a memory hierarchy, due to hardware de-

signs such as multi-port and/or multi-bank caches.
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This study reevaluates data stall time with the con-

sideration of both locality and concurrency at the same

time and focuses on “pure miss”. It reveals new di-

rections and mechanisms for reducing data stall time

based on a unified and balanced consideration of both

data locality and concurrency, which have not received

enough attention despite their increasing importance.

Modern memory systems have become increasingly

more complex and cannot be analyzed without a model.

Different optimizations and components are introduced

to cope with the memory problem[6]. Most of these

optimizations and components, however, are focused

on one of the properties of memory systems, such as

miss rate. Their overall influence on the underlying

computing system is unclear in general. Average mem-

ory access time (AMAT) is a great tool to analyze the

contribution of each memory performance parameter

toward the overall memory access time in terms of lo-

cality. But, as indicated in [6], AMAT needs to be en-

hanced to identify data access concurrency to cope with

the complexity of modern memory systems. In order to

evaluate the impact of concurrency on data stall time,

we use the newly proposed concurrent average memory

access time (C-AMAT) model[10-11] in this study. C-

AMAT is an extension of the conventional AMAT and

includes memory concurrency into the average memory

access time. C-AMAT confirms that memory concur-

rency is a first class citizen of memory system perfor-

mance and is as significant as memory locality.

An analytical data stall time model that simulta-

neously considers concurrency and locality, named L-C

model, is presented. Therefore, concurrency-oriented

techniques such as prefetching, non-blocking, out-of-

order execution, and multi-bank design can be analyzed

and evaluated. Moreover, the L-C model has been re-

lated directly to the application execution time, and

a series of analytical results are provided to facilitate

understanding and reducing data stall time in modern

computer architectures. Therefore, we provide a model

for the reduction of applications’ execution time.

This study makes the following main contributions.

1) We present a data stall time model in terms of C-

AMAT. The model considers both locality and concur-

rency characteristics of data access patterns, and thus

it is called L-C model and can be applied to general

state-of-the-art processors that are no longer limited

to in-order processors and can involve memory concur-

rency features.

2) We present a data stall time model in terms of

“pure miss”. The model is focused on the real source of

data stall, pure miss, and thus it is called P-M model

and reshapes traditional mind that “all the misses are

harmful for performance”.

3) We derive three theoretical results with respect

to the properties of pure miss rate, pure miss penalty,

and pure miss concurrency in the data stall time model,

exposing the relationship between data stall time and

data access patterns. The results are useful in the re-

duction of data stall time (therefore execution time) in

modern computer architectures.

4) We reveal pitfalls of current memory systems and

new opportunities for a future memory system, based

on the model and theoretical results.

We introduce a framework (see Table 3) with re-

gard to data stall time optimizations. The frame-

work presents 38 new concurrency-contributed entries

for data stall time reduction, showing the model’s ef-

fectiveness for memory optimization and for future ar-

chitecture and software design on modern processors.

The rest of this paper is organized as follows. Sec-

tion 2 provides a brief review of locality and concur-

rency of data access. Section 3 proposes the data stall

time model. Then, Section 4 presents a series of theo-

rems for data stall time. Section 5 describes our ex-

perimental details and validations for our results. Sec-

tion 6 discusses opportunities for future memory sys-

tems and pitfalls of current memory systems in reduc-

ing data stall time. Section 7 summarizes related work,

and finally, Section 8 provides concluding remarks and

future work.

2 Backgrounds on Memory Locality and

Concurrency

There are three commonly used performance met-

rics for evaluating memory systems[6], namely miss rate

(MR), average miss penalty (AMP), and average mem-

ory access time (AMAT). MR reflects the portion of the

accessed data in or out of the cache, but not the penalty

of the miss access. AMP only reports the penalty of

the cache misses; it does not show the performance

degradation. AMAT is a comprehensive memory met-

ric, but it is still based on a single data access viewpoint,

and does not consider the memory hit and miss access

concurrency. The conventional AMAT formulation is

shown in (1). AMAT does not consider the concur-

rency of memory accesses, in either the hit or the miss

section of the formula.

AMAT = H +MR×AMP. (1)
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As shown in (2), C-AMAT extends AMAT to con-

sider memory concurrency. CH can be contributed by

caches with multi-port or multi-bank. CM can be con-

tributed by non-blocking cache structure. In addition,

out-of-order execution, multiple issue pipeline, SMT,

and CMP, can increase both CH and CM .

C-AMAT =
H

CH
+ pMR× pAMP

CM
. (2)

According to the definition in [10], a pure miss is

the one which does not overlap with any hit access ac-

tivity. The pure miss rate pMR is the number of pure

misses divided by the total number of accesses, which

is different from conventional miss rate MR. pAMP is

the average number of pure miss cycles per miss access.

The notation abbreviations used in this study are given

in Table 1.

Table 1. Symbol Abbreviations

Notation Meaning

AMAT Average memory access time

C-AMAT Concurrent AMAT

H Hit time

MR (Conventional) miss rate

pMR Pure miss rate

AMP (Conventional) average miss penalty

pAMP Pure AMP

CH Hit concurrency

CM Pure miss concurrency

CPU-time Application execution time

IC Instruction count

CPIexe Processor computing cycles with zero
data access delay

fmem Portion of the instructions which access
memory

IssueRatio Probability of a new data access being is-
sued in a clock cycle

C-AMATstall Data stall time per access

cycle-time Length of each clock cycle

TmemAcc Memory access time

TmemStall Data stall time

CmemAcc Memory access count

overlapCyclesc-m Overlapping cycles between compute cy-
cles and memory active cycles

overlapRatioc-m Ratio of the compute and memory access
overlapping time over the total memory
active time

For clarity, Fig.1 provides a demonstration exam-

ple to illustrate the “pure miss” and hit cycle concept.

There are five different memory accesses in Fig.1. Each

access contains three cycles for cache hit operations.

If it is a miss, additional miss penalty cycles will be

required, and the number of miss penalty cycles is un-

certain. Accesses 1, 2, and 5 are hit accesses; accesses

3 and 4 are miss accesses. Access 3 has a 3-cycle miss

penalty; access 4 has only a 1-cycle miss penalty. When

considering the access concurrency, only access 3 con-

tains two pure miss cycles. Though access 4 has one

miss cycle, this cycle is not a pure miss cycle, because

it overlaps with the hit cycles of access 5. Therefore,

the (pure) miss rate of the five accesses is 0.2, accord-

ing to our new definition of concurrent (pure) miss rate,

instead of 0.4 for the conventional non-concurrent ver-

sion.

Access 1

Access 2

Access 3

Access 4

Access 5

Hit
Phase

Hit
Phase

Pure Miss
Phase 

Hit
Phase

Hit/Miss
Phase

Pure Miss 
Cycles

Miss Cycles

1.6 Cycles

3.8 Cycles

C-AMAT

AMAT

Fig.1. C-AMAT and pure miss example.

The reason for bypass misses whose cycles are over-

lapping with hit accesses is that this kind of miss ac-

cesses will not cause processor stall; the processor can

continue processing with the hit accesses. According

to (2), C-AMAT is eight cycles out of five accesses or

1.6 cycles per access; whereas by (1), AMAT is 3 + 0.4

× 2 or 3.8 cycles per access. The difference between

C-AMAT and AMAT is the contribution of concurrent

data access. In this example, concurrency has doubled

memory performance.

Similar to AMAT, C-AMAT can be reduced by op-

timizing its five parameters. In particular, increasing

the average hit and miss concurrency, and decreasing

the hit access time, miss rate, and miss penalty will

improve the system performance. Please notice that

while the three parameters, hit access time, pure miss

rate, and pure miss penalty, are inherited from AMAT,

in C-AMAT, the terms of miss rate and miss penalty

are redefined as pure miss rate and pure miss penalty.



230 J. Comput. Sci. & Technol., Mar. 2015, Vol.30, No.2

Since the hit access time, H, is unchanged from AMAT

and is well studied, this study focuses on the optimiza-

tion of the other four parameters of C-AMAT.

More information of C-AMAT can be found in [10]

and [11]. This paper focuses on using C-AMAT as a

tool to reduce data stall time. It is an application of

C-AMAT but not an introduction of C-AMAT, which

has already been well documented in [10] and [11].

3 Proposed Data Stall Time Models

C-AMAT has two unique features:

1) C-AMAT unifies the combined impact of data

access locality and concurrency on data access delay;

2) C-AMAT describes the impact of the “pure

miss”, which is deemed as the source of data stall, on

overall data access delay.

For the former, the impacts of data locality and

concurrency are entangled and often conflict with each

other. A unified description of the joint impact of lo-

cality and concurrency is indispensable for data stall

time reduction, and is missing in current studies. C-

AMAT is a timely tool for data intensive applications.

To effectively apply C-AMAT in engineering practice,

we need to have a better understanding of the relation

between C-AMAT and CPU time. That is, when we

optimize the locality or the concurrency in terms of the

five parameters of C-AMAT, what is the effect on the

CPU time?

For the latter, the feature 2), we notice that only

the “pure misses” cause data stall, thus focusing on re-

ducing (non-pure) miss numbers is not always necessary

and often wasteful. For this reason, we have developed

a model to analyze and reduce pure miss only.

In this section, based on the two features of C-

AMAT, we formally derive models and formulations to

unify the impact of data locality and concurrency on

pure miss reduction.

3.1 Combined Impact of Locality and

Concurrency

The execution time of each processor in a system

consists of two components[6]: processor active time

and data stall time. Here the processor active time

is the time during which the processor is busy execut-

ing the instructions of the user program. The data stall

time is the time when the processor is stalled waiting

for memory reference. This time consists of the access

delay, the contention delay, and, in multi-thread cases,

the latency overhead due to cache coherency and con-

sistency.

(3) gives the CPU time of an in-order processor in

terms of these two components of time[6].

CPU -time = IC × (CPIexe + fmem ×AMAT )×
cycle-time. (3)

In an in-order processor, when a data miss occurs,

the processor waits for the data to be fetched before

continuing. This can result in a data stall lasting several

cycles, depending on where in the memory hierarchy the

data resides[6]. However, in an out-of-order processor,

when a miss occurs, other instructions can be executed

while the memory system is servicing the miss. This al-

lows multiple outstanding reads and writes, depending

on the underlying hardware supports. Therefore, some

of the memory system latency is hidden. An out-of-

order processor is regarded as being stalled in a clock

cycle if it does not retire the maximum possible number

of instructions in that cycle[6].

There are three kinds of concurrency. The first

kind is between the non-memory instructions within

the computing components of the processor such as

ALU and FPU, which is referred to as instruction level

parallelism (ILP). The second kind is between concur-

rent memory references, which is the data access para-

llelism, and has already been considered by C-AMAT.

The last kind is between computing and memory ac-

cesses, which can be characterized by overlapRatioc-m
shown in (4). overlapRatioc-m is the ratio of the com-

puting and memory access overlapping time over the

total memory access time. We focus on the latter two

types of concurrency, formulating their impacts on final

performance.

overlapRatioc-m =
overlapCyclesc-m

TmemAcc
. (4)

If the processor is stalled, the memory must be ac-

tive, and vice versa. In other words, the total mem-

ory active time does not completely equal the proces-

sor data stall time. (3) does not hold for out-of-order

processors, and cannot reflect the concurrency features

in the modern complex memory systems.

The data stall time model can be derived in terms

of C-AMAT, and then the final CPU time can be ex-

pressed as follows, which is called L-C model.

Theorem 1. Locality-Concurrency (L-C) model:

CPU -time = IC × (CPIexe + fmem × C-AMAT ×
(1− overlapRatioc-m))× cycle-time.

Proof.
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Based on definition[10],

C-AMAT =
TmemAcc

CmemAcc
.

Therefore,

C-AMAT × (1− overlapRatioc-m)

=
TmemAcc

CmemAcc
× (1− overlapRatioc-m).

Because,

overlapRatioc-m =
overlapCyclesc-m

TmemAcc
.

Thus,

C-AMAT × (1− overlapRatioc-m)

=
TmemAcc

CmemAcc
×
(
1− overlapCyclesc-m

TmemAcc

)
.

That is,

C-AMAT × (1− overlapRatioc-m)

=
TmemAcc

CmemAcc
× TmemAcc − overlapCyclesc-m

TmemAcc
. (5)

Writing memory access time in terms of computing

time and data stall time, we get (6).

overlapCyclesc-m + TmemStall = TmemAcc. (6)

Combining (5) and (6), we can derive

C-AMAT × (1− overlapRatioc-m)

=
TmemAcc

CmemAcc
× TmemStall

TmemAcc
.

And recall that instruction number multiplied by

memory access frequency is equal to the number of

memory accesses,

IC × fmem = CmemAcc.

We can get

fmem × C-AMAT × (1− overlapRatioc-m)

=
CmemAcc

IC
× TmemAcc

CmemAcc
× TmemStall

TmemAcc
.

Thus, (7) holds.

fmem × C-AMAT × (1− overlapRatioc-m)

=
TmemStall

IC
. (7)

That is, the number of data stall cycles per instruc-

tion equals fmem × C-AMAT × (1− overlapRatioc-m)

if memory concurrence is considered.

By definition, CPIexe can be expressed as average

compute time per instruction,

CPIexe =
Tcompute

IC
. (8)

Therefore, combining (7) and (8), we can get (9).

CPIexe + fmem × C-AMAT ×
(1− overlapRatioc-m)

=
Tcompute + TmemStall

IC
. (9)

Since the total application execution time is the

computing time plus the data stall time, and CPI is

the amortized application execution time per instruc-

tion,

CPI =
Tcompute + TmemStall

IC
.

Therefore,

CPIexe + fmem × C-AMAT ×
(1− overlapRatioc-m) = CPI.

And because CPU -time = IC × CPI × cycle-time

is a classical formula[6], the L-C model holds. �
The proof of the L-C model leads to two interesting

corollaries.

Corollary 1. When memory concurrency is con-

sidered,

data stall cycles per instruction

= fmem × C-AMAT × (1− overlapRatioc-m).

Proof. This is (7). �
Corollary 2. (3) is a special case of the L-C model

where memory concurrency is not considered.

Proof. A direct result of Corollary 1. �
The correctness of the L-C model is based on the

following assumptions. First, C-AMAT here is mea-

sured for L1 caches. Second, (3) is designed for a single

program. As an extension of (3), in the L-C model, C-

AMAT is also considered and measured only for a single

program. In multi-program environment, C-AMAT can

be measured for each program individually.

Recall that C-AMAT contains AMAT as a spe-

cial case where memory concurrency does not exist.

When memory concurrency does not exist, CH = 1

and CM = 1, pAMP = AMP , pMR = MR; therefore,

C-AMAT = AMAT . Especially, overlapRatioc-m = 0.

At this time, the L-C model becomes (3). Therefore,
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the L-C model is valid regardless of the processor type

and memory concurrency features.

Fig.2 shows an execution scenario of instruction

computing and memory access. This scenario involves

both instruction level parallelism and data access para-

llelism. The data access activities are the same as

those in Fig.1. There are six instructions that are com-

pleted in eight cycles, and only the sixth one does not

need data access, so CPI = 8/6, fmem = 5/6. Be-

cause the compute phase of the six instructions takes

six cycles, CPIexe = 6/6. The C-AMAT value is 8/5.

The memory access time TmemAcc is eight cycles, in

which six cycles are overlapped by compute, and thus

overlapCyclesc-m is 6 cycles, and overlapRatioc-m is

6/8. Therefore, CPIexe + fmem × C-AMAT × (1 −
overlapRatioc-m) = 8/6, which is also the value of CPI.

Due to CPU -time = IC × CPI × cycle-time, the L-C

model holds.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Pure Miss
Phase 

Hit
Phase

Hit
Phase

Hit
Phase

Hit/Miss
Phase

Pure Miss
Cycles

Miss Cycles

Compute Memory Access
Legend

Instruction 6

Fig.2. Execution scenario of instruction compute and memory
access.

The L-C model shows that application execution

time is linearly related with data stall time and the

parameters of the data stall time are analytically avail-

able and practically measurable.

3.2 Effect of Pure Miss on Data Stall Time

Please notice that miss cycles which are overlapped

with hit accesses do not cause processor stall, since

the processor can continue generating memory accesses

while waiting for the missing data to return from lower

memory hierarchies. This effect can be represented by

overlapRatioc-m which is defined in (4). In terms of

C-AMAT, (10) holds.

overlapRatioc-m =
H

CH
/C-AMAT. (10)

We present the proof of (10). Combining the L-C

model and (10), we can derive the P-M model as fol-

lows.

Theorem 2. Pure-Miss (P-M) Model:

CPU -time

= IC ×
(
CPIexe + fmem × pMR× pAMP

CM

)
×

cycle-time,

where the data stall time is

data stall time = IC × fmem × pMR× pAMP

CM
×

cycle-time.

Generally, the P-M model directly shows the effect of

pure miss on data stall time.

Proof. We first prove (10).

According to the definition of overlapRatioc-m in

(4),

overlapRatioc-m =
overlapCyclesc-m

TmemAcc
.

Because the processor can compute during hit

phases,

overlapCyclesc-m = TH ,

and the memory access time is the sum of hit time and

miss time,

TmemAcc = TH + TM .

Then we derive

overlapRatioc-m =
TH

TH + TM
,

where H is the number of hit cycles when accessing the

current cache layer. Every cache access needs to spend

H cycles to determine whether this is a hit or a miss

access. Note H is a constant value in our cache model.

Pure miss rate (pMR) in this study is an extended ver-

sion of the traditional miss rate definition with the con-

sideration of concurrency. Only when a miss access has

no overlapping with any hit accesses, this miss access

is a pure miss access. Thus,

pMR =
CMemPMiss

CMemAcc
,

where CMemPMiss is the total number of pure misses.

pAMP is the average miss penalty which only consid-

ers pure miss accesses:

pAMP =
TMemPMiss

CMemPMiss
,
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where TMemPMiss is the sum of total pure miss cycles.

The pure miss cycles are the cache miss access cycles

without any hit access. Thus

H

CH
+ pMR× pAMP

CM

=
H

N∑
i=0

Ci × ti
TH

+
CMemPMiss

CMemAcc
× TMemPMiss

CMemPMiss
×

1
M∑
j=0

Cj × tj
TM

=
H × TH

N∑
i=0

Ci × ti

+
CMemPMiss

CMemAcc
× TMemPMiss

CMemPMiss
×

TM

M∑
j=0

Cj × tj

. (11)

Because,

N∑
i=0

Ci × ti = CMemAcc ×H,

M∑
j=0

Cj × tj = TMemPMiss,

thus,

(11) =
H × TH

CMemAcc ×H
+

TMemPMiss

CMemAcc
× TM

TMemPMiss

=
TH

CMemAcc
+

TM

CMemAcc
.

Therefore,

H
CH

H
CH

+ pMR× pAMP
CM

=
H×TH

CMemAcc×H
TH+TM

CMemAcc

=
TH

TH + TM
,

and thus

overlapRatioc-m =
H
CH

H
CH

+ pMR× pAMP
CM

.

We use the scenario in Fig.2 to check if the P-

M model holds. pMR is 1/5, pAMP is 2, CM is 1,

and thus pMR × pAMP/CM is 2/5 which is equal to

C-AMAT × (1 − overlapRatioc-m). Recall the L-C

model, we can see that P-M model holds. �
In the following sections, the optimization of the

parameters in the data stall time model is discussed.

4 Theoretical Properties of the Data Stall

Time Models

The L-C model transfers the task of reducing data

stall time to increase overlapRatioc-m and decrease

fmem and C-AMAT. For overlapRatioc-m, the opti-

mization involves the overlapping between computing

and memory access. For fmem, the optimization is

known and is given in [6].

The P-M model further points that pMR, pAMP ,

and CM are the real sources of data stall. In this sec-

tion, we focus on the improvement of them, and three

theorems are introduced accordingly. As shown by

(2), C-AMAT differentiates conventional miss and pure

miss. The pure miss is the real culprit for data stall

time. We find that hit activity has a remarkable ef-

fect on conventional miss. IssueRatio is defined as the

probability of a new data access issued by the CPU in a

clock cycle. For example, in Fig.2, five of the 10 cycles

have new data access being issued, and thus IssueRatio

is 50%. We find that IssueRatio can ease the impact

of pMR and pAMP on the final performance.

4.1 Factors Influencing pMR

Theorem 3 (pMR Theorem). Assuming memory

accesses are issued independently and hit time is three

cycles, we have the following equation.

pMR = (1− (H × IssueRatio−H × IssueRatio2 +

IssueRatio3)(AMAT−H))×MR.

Proof. Ti denotes the time in the i-th cycle. For any

memory access whose start time and end time are Ts

and Te respectively, there are (e− s+1) elapsed cycles,

which are Ts, Ts+1, . . . , Te−1, and Te respectively.

[Ts, Te] interval will be referred to as the service

time of the reference. Assuming the hit time lasts for

h cycles from Ts to Ts+h−1, the miss phase will last

e− (s+ h) + 1 cycles.

P(e > s + h) = MR, and thus P(e < s + h) =

1−MR,

P(each cycle in the [Ts, Te] interval is a hit cycle

|e < s+ h) = 1.

Therefore,

pMR

= P(there is at least one pure miss cycle in the [Ts, Te]
interval)

= 1− P(there is no pure miss cycle in the [Ts, Te] in-
terval)

= 1− P(each cycle in the [Ts, Te] interval is a hit cycle)
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= 1−( P(e > s+h)× P(each cycle in the [Ts, Te] inter-
val is a hit cycle |e > s+h)+P(e < s+h)×P (each
cycle in the [Ts, Te] interval is a hit cycle |e < s+h)).

= 1 − (MR× P(each cycle in the [Ts, Te] interval is a
hit cycle |e > s+ h) + (1−MR)× 1). (12)

Because P(each cycle in the [Ts, Ts+h−1] interval is

a hit cycle |e > s+ h) = 1,

P (each cycle in the [Ts, Te] interval is a hit cycle

|e > s+ h)

= P(each cycle in the [Ts+h, Te] interval is a hit cycle
|e > s+ h). (13)

Because when e > s + h, each cycle within [Ts+h,

Te] for the current access is in miss phase,

(13)

= P(for each cycle within [Ts+h, Te], at least one access
that is different from current one is in the hit phase
|e > s+ h)

= (P(at one cycle, at least one access that is different
from current one is hit))e−(s+h)+1. (14)

Assuming event A denotes “at cycle t, at least one

access that is different from current one is in the hit

phase”, event A0 denotes “at cycle t that is the current

cycle, at least one access that is different from current

one is issued”, event A1 denotes “at cycle t−1, at least

one access that is different from current one is issued”,

event A2 denotes “at cycle t−2, at least one access that

is different from current one is issued”, . . . , event Ah−1

denotes “at cycle t – (h− 1), at least one access that is

different from current one is issued”,

then

A =

h−1∪
i=0

Ai.

Therefore,

P(A) = P(
h−1∪
i=0

Ai).

Here we assume h equals 3 as the typical value of

modern L1 cache.

P(A) = P(
2∪

i=0

Ai) = P(A0) + P(A1) + P(A2)−

P(A0A1)− P(A0A2)− P(A1A2) +

P(A0A1A2).

Suppose the memory accesses are issued in equal

probability,

P(A0) = P(A1) = P(A2) = IssueRatio.

Then

P(A) = 3× IssueRatio− 3× IssueRatio2 +

IssueRatio3.

Therefore,

(14) = (3× IssueRatio− 3× IssueRatio2 +

IssueRatio3)AMAT−H . (15)

Combining (12) and (15), the accurate gap between

pMR and MR is presented as follows.

MR− pMR

= MR− (1− (MR× (H × IssueRatio−
H × IssueRatio2 + IssueRatio3)AMAT−H +

(1−MR)× 1))

= MR× (H × IssueRatio−H × IssueRatio2 +

IssueRatio3)AMAT−H ,

and thus

pMR

MR
= 1− (H × IssueRatio−H × IssueRatio2 +

IssueRatio3)(AMAT−H). �

The pMR theorem serves the purpose for demon-

strating the influential factors of pMR. From the pMR

theorem, it can be observed that pMR can be reduced

by decreasing the values of MR, AMAT, or by increas-

ing the memory access issue ratio. The former indicates

that the conventional methods for reducing MR and

AMAT can be applied to reduce pMR directly. The

latter illustrates the weight of memory concurrency in

data-intensive computing, which further confirms the

timely importance of C-AMAT and C-AMAT based op-

timizations.

The hit time of L1 cache is generally close to pro-

cessor clock time, and the typical value is 1∼3 cycles.

The assumption that H is 3 cycles is not strict, and the

results of when the hit time is 1 or 2 cycles are similar

to those in Fig.3.
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Fig.3. Effect of IssueRatio on pMR.
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Based on the pMR theorem, Fig.3 is plotted to show

the relationship of these factors. pMR is directly in-

fluenced by the memory access issue ratio. When the

access issue ratio is low, the pure miss rate is close to

the conventional miss rate. When the issue rate is high,

pMR is much smaller than MR.

Fig.3 also shows that, compared with the issue ratio,

the average access time AMAT plays a secondary role

in pure miss rate reduction. Reducing AMAT will help

pMR, but, when memory access issue ratio is high, the

value of AMAT does little to influence pMR. Each line

in Fig.3 corresponds to different AMAT values from 10

to 130 cycles, at an interval of 40 cycles.

4.2 Factors Influencing pAMP

pAMP shows different characteristics compared to

pMR, and exposes more opportunities for performance

optimization, even for non-data intensive applications.

Theorem 4 (pAMP Theorem). Assuming the

memory accesses are issued independently, pAMP can

be represented as:

pAMP = (1− (3× IssueRatio− 3× IssueRatio2 +

IssueRatio3))×MR×AMP.

Proof.

pAMP

= P(at cycle t, no access that is different from current
one is in the hit phase |e > s+h− 1) (e− s− h+1)

= (1− P(A)) (e− s− h+ 1),

where e− s−h+1 = MR×AMP (AMP is calculated

for misses, but e− s− h+1 is counted for all accesses).

Recall

P(A) = 3× IssueRatio− 3× IssueRatio2 +

IssueRatio3;

therefore,

pAMP

AMP
= (1− (3× IssueRatio− 3× IssueRatio2 +

IssueRatio3))×MR. �

The pAMP theorem justifies that pAMP can be

reduced by decreasing MR or AMP, or by increasing

the memory access issue ratio. The former implies that

the conventional methods for reducing MR and AMP

can be applied to reduce pAMP , and the latter shows

that memory concurrency is especially important for

data-intensive computing.

Based on the pAMP theorem, Fig.4 is drawn to

show the relationship of these factors. pAMP is di-

rectly influenced by the memory access issue ratio.

When the ratio is low, the pure miss penalty is close

to the conventional miss penalty. When the issue ra-

tio is high, pAMP is much smaller than AMP . Fig.4

also shows that the conventional miss rate MR plays a

secondary role in pure miss penalty reduction. Reduc-

ing MR will help pAMP , but when the memory access

issue ratio is high, the value of MR does little to in-

fluence pAMP . Each line in the figure corresponds to

different MR values from 0.1 to 1.0.
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Fig.4. Effect of IssueRatio on pAMP .

4.3 Factors Influencing CH and CM

Compared with pMR and pAMP , CH and CM

are concurrency parameters which characterize mem-

ory concurrency directly.

Theorem 5 (CH and CM Theorem). Assum-

ing the instruction window size is IW, the portions of

the data dependency, control dependency, and memory

references are fdata dep, fcontrol dep, and fmem respec-

tively, within the window, and the hit rate is (1−MR),

then

CH = min|{IW × fmem ×
(1− fdata dep − fcontrol dep)× (1−MR),

number of cache port×
number of cache pipeline stage}. (16)

Similarly, for the average miss concurrency CM ,

CM = min{IW × fmem × (1− fdata dep −
fcontrol dep)×MR,#MSHR}, (17)
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where #MSHR is the dynamic number of MSHR en-

tries.

Proof.

As illustrated in Fig.5, miss concurrency CM can be

derived through the following five steps.

IW Size

IW C D C D D CΤ Τ Τ

fmem/P(an instruction is a data access (load or store))

/the proportion of data access instructions

Fig.5. Miss concurrency is affected by both hardware and soft-
ware. C: compute instruction. D: data access instruction.

First, IW , the size of the instruction window (IW)

sets a hard limit on the ability of an ILP processor to

look ahead to find latency hiding instructions.

Second, within the instruction window, not all of

the instructions issue memory requests, and the actual

number of memory requests is IW × fmem.

Third, overlapping the execution of non-memory in-

structions with stalled accesses has two requirements.

1) There must be instructions available that do not de-

pend upon the data being accessed (data dependency).

2) The processor should know the next instruction to

be executed, regardless of the value of the data being

read (control dependency). Control dependencies are

caused by branches within uni-processor applications,

and both branches and synchronization stalls within

multiprocessor applications. Here the number of the

memory references that are not related with data de-

pendency and control dependency is IW × fmem × (1−
fdata dep − fcontrol dep).

Fourth, among the memory accesses, the portion of

the hit ones is (1 – MR). Thus the demand size is de-

termined as IW × fmem× (1− fdata dep− fcontrol dep)×
(1−MR).

Finally, the actual miss concurrency may be less

than the demand size, due to the physical MSHR size

presenting a hardware limitation for the maximum miss

concurrency, which will be discussed more in Subsection

5.2.4. This has concluded the proof of (17).

The proof of the CH theorem can be conducted in

a similar manner. �
(16) and (17) are similar, and thus here we only

present the discussion on one of them, (17), because

miss penalty is much larger than hit time.

From (17), it can be seen that the average miss con-

currency increases with the decrease in data and control

dependency, or the increase of MR, and the size of IW

and MSHR. The former three parameters, IW , fmen,

fdata dep, are related to application features, while the

later two parameters, MR, #MSHR are related to ar-

chitecture features. The former three are also the con-

ventional concerns of AMAT. Only, with the considera-

tion of concurrency, the data and control dependency

becomes more complex here than that in AMAT.

We consider all the possible values of the parameters

in the equations, and then plot the cumulative distribu-

tion of pure miss concurrency as shown in Fig.6. In an

ideal case, MSHR supports all the outstanding misses

within the instruction window, and in this case, ave-

rage miss concurrency is optimal. If we use a large IW

(ROB is assumed with the same size) and let MSHR

support more misses, then the maximum value of CM

increases.

By combining the theorems together, we conclude

that pMR and pAMP are directly influenced by data

access intensity. This feature is vital for data-intensive

computing. Also, locality remains important un-

der memory concurrency because conventional locality-

oriented techniques are useful for the reduction of pMR

and pAMP .

The CM theorem shows that access concurrency is

the result of the interaction between application and

architecture features. Rather than discussing the ac-

tivities within a processor following a cache miss via

a series of simulation experiments[12], the CM theo-

rem presents the general theoretical result to reveal the

essence behind pure miss concurrency, which allows a

clear direction to maximize concurrency.

5 Experimental Verifications

Experimental simulations are conducted to verify

the theoretical results. The experiment settings and

results are presented in this section.

5.1 Experimental Setup

As shown in Fig.7, the state-of-the-art cycle-

accurate simulators GEM5[13] and DRAMSim2[14] are

integrated together. The C-AMAT analyzer with de-

tectors for both hits and misses is implemented.

SPEC CPU2006 benchmark suite[15] is used in our

simulations. The benchmarks are compiled using GCC

4.3.0 and the -O3 optimization level, and are executed

using reference input sets.
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Fig.7. (a) Simulation infrastructure and (b) C-AMAT detecting
structure.

A detailed out-of-order CPU model in the GEM5

simulator is adopted. The experiments assume the de-

fault configurations as shown in Table 2. For each

benchmark, 10 million instructions are simulated to col-

lect statistics.

5.2 Results and Analysis

We use the simulator and real benchmarks to partly

check if the analytical model is right. Due to space limi-

tation, only a few results are presented.

5.2.1 Data Stall Time Model Result

For the L-C model, we verify two things: the L-C

model is correct and (3) is incorrect when data concur-

rency exists.

As shown in Fig.8, the weighted AMAT value

(fmem × AMAT ) is often larger than the total CPI.

Certainly, that is wrong. AMAT-based (3) does not

work well when memory concurrency is dominant. On

the other hand, Fig.9 shows that the total CPI of an ap-

plication can be decomposed into processor active time

and C-AMAT based data stall time, where the data

stall time is computed in terms of C-AMAT. The data

stall time in Fig.9 is obtained through the expression
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in Corollary 1 and is equal to the directly measured

values.

Table 2. Default Machine Configurations

Parameter Value

Core 4 GHz out of order processor

4 issue width

128-entry instruction window and ROB

48-entry load and store buffer

6 IntALU 1 cycle, 1 IntMul 3 cycles

2 FPAdd 2 cycles, 1 FPCmp 2 cycles, 1 FPCvt
2 cycles, 1 FPMul 4 cycles, 1 FPDiv 12 cycles

Caches L1 caches: 32 KB Inst/32 KB data, 2-way, 64 B
cache line, 3-cycle hit latency

L1 MSHR: ICache 8 MSHR/DCache 8 MSHR,
32 targets/MSHR

L2 cache: 512 KB, 16-way, 64 B cache line, 24-
cycle hit latency

L2 MSHR: 16 MSHR, 32 targets/MSHR

Main 200 MHz bus cycle, 8 GB DDR2-PC3200

memory Close page policy

Latency: 12.5-12.5-12.5 ns (tRP-tRCD-CL)

32 DRAM banks

32.00

64.00 CPI Weighted AMAT 
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Fig.8. Weighted AMAT is larger than total CPI.
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Fig.9. C-AMAT matches the actual measurement.

5.2.2 Pure Miss Rate Result

As shown in Fig.10, for benchmarks of SPEC

CPU2006, only a small percent of their access cycles

issue new memory access, with the largest one less than

30%.

Therefore, according to Fig.3, the ratio between

pMR and MR should be approximate to 1, which is

consistent with the simulation results shown in Fig.11.

The low ratio of issue memory accesses makes optimiz-

ing C-AMAT via pMR reduction a vain attempt for

SPEC CPU2006 under current system implementation.

This does not mean pMR has no potential. As we show

in the next subsection, this in fact shows that current

system design has pitfalls, which requires further inves-

tigation. Based on Fig.3, if the ratio of issue memory-

access cycles is high, pMR could be significantly dif-

ferent with MR. Fig.10 and Fig.11 show that current

computing systems have not fully utilized memory con-

currency. New ways to improve memory performance

via concurrency are summarized in Table 3.
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Fig.10. IssueRatios of 27 benchmarks from SPEC CPU2006.
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For applications whose memory access probabilities

in each cycle are large enough, while AMAT is small,

the pMR reduction will be remarkably significant.

5.2.3 Pure Miss Penalty Result

Fig.12 illustrates that the ratio between pAMP and

AMP is affected by MR and IssueRatio. The ratio

between pAMP and AMP is in negative correlation to

IssueRatio and in positive correlation to MR. These

trends are consistent with the curves shown in Fig.4.
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IssueRatio.

5.2.4 Pure Miss Concurrency Result

A detailed validation may need many experimen-

tal configurations to verify the effects of IW size, data

dependency, control dependency, physical MSHR size,

etc. Readers may take the data in [10] for reference,

which fits well for the CM theorem. Here, our focus is

on the discussion of the following three questions:

Q1: What is the main source of miss concurrency

of an application?

Q2: How does MSHR impact the miss concurrency?

Q3: What is the relationship between data locality

and miss concurrency in terms of MSHR?

Based on the results of a number of comparative

experiments, it is discovered that the average miss con-

currency is not proportional to the physical MSHR size

(as shown in Fig.13), and the maximum miss concur-

rency could be much larger than the physical MSHR

size. There are large gaps between them. These indi-

cate that the miss concurrency has not been optimized

for most applications. The reasoning behind this phe-

nomenon is two-fold. 1) Concurrency is limited by the

inherited data access concurrency of the application in

an instruction window. 2) Even when a miss occurs,

locality does exist in the form of reusing opportunity.
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Fig.13. Maximum and average pure miss concurrency of L1
data cache.

According to the CM theorem, the gaps between

maximum and average miss concurrency are due to the

small number of memory accesses within the instruction

window, or the data and control dependencies within

the application. This claim is confirmed by our simula-

tion results.

Fig.13 shows that “436.cactusADM”[15] has the

worst average pure miss concurrency. “436.cactu-

sADM” solves the Einstein evolution equations. The

main data structure of 436.cactusADM is a 3-D array

with iteration over points. Each iteration only accesses

the nearest neighbors in one dimension, which incurs

many data dependencies and limits the data access con-

currency. As a result, fdata dep is high and fmem is low

within the IW.

Fig.13 also shows “458.sjeng” and “462.libquan-

tum” are examples with high miss concurrency. They

have good reasons to be so. As a chess-play program,

“458.sjeng”[15] attempts to find the best move via a

combination of tree searches, advanced move ordering,

positional evaluation, and heuristic forward pruning.

Multiple independent searches can occur simultane-

ously. That is, fdata dep is low and fmem is high within

the IW, which incurs many concurrent misses. As a pro-

gram simulating a quantum computer, “462.libquan-

tum” implements the Shor’s factorization algorithm[15],

which relies heavily on the ability of a quantum com-

puter to be in many states simultaneously. Physicists

call this behavior a “superposition” of states. To com-

pute the period of a function, the algorithm evaluates

the function at all points simultaneously, and thus fmem

is high. Since these points are independent with each

other, fdata dep is low. These application features con-

tinually incur a number of outstanding data accesses.

fcontrol dep can be analyzed in a similar manner through

understanding the applications.
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For the first question, using the above analysis, we

can conclude that miss concurrency depends heavily

on the number of memory accesses in an instruction

window and their issue dependency, which is the term

IW ×fmem× (1−fdata dep−fcontrol dep)×MR denoted

in the CM theorem.

The second question is related to the use of hard-

ware structure MSHRs. Multiple misses sharing one

MSHR at the same time are referred to as “reusabi-

lity of MSHR”. The reason of MSHR reuse is that the

misses that fall into the same cache line will be held by

a single MSHR. As a result, due to the spatial locality

of misses, the occurrence of misses sometimes shows a

clustering feature. As shown in Fig.14, there are diffe-

rent degrees of reusability in each physical MSHR, from

2 to 16. Therefore, the static and the dynamic number

of MSHRs must be defined. The static number is the

number of physical MSHRs. Each physical MSHR can

be shared by many missing accesses and thus can be

seen as multiple logical MSHRs. The dynamic number

is the number of logical MSHRs, which is referred to as

#MSHR. Combining Fig.13 and Fig.14, in addition to

the instruction window size IW, dynamic MSHR num-

ber #MSHR plays an important role in affecting the

cumulative distribution of miss concurrency.
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Fig.14. Average reusability of each physical MSHR.

Due to area and power consumption constraints, the

static MSHR number cannot be very large. However,

the dynamic number can be much larger than the static

number, and the MSHR reusability mostly compensates

for the limitation of the static MSHR number. Never-

theless, as shown in Fig.14, for an application that the

MSHR reusability is low such as 434.zeusmp, the miss

concurrency is strictly limited. Note that the number

of logical MSHRs is the maximum number of concur-

rent misses the MSHRs can support. Depending on the

locality of the missing accesses, in the best case, miss

concurrency can be several dozen times of the physical

MSHR number; in the worst case, it would be no more

than the physical MSHR number.

Therefore, for the third question, it can be con-

cluded that the locality of missing accesses plays an

important role in utilizing MSHRs.

In summary, the CM theorem reveals that miss con-

currency is affected by architecture and application fea-

tures, which are consistent with the experimental re-

sults shown in Fig.13 and the data presented in [10].

6 Pitfalls and Opportunities

Locality and concurrency are two basic and vital

factors of memory optimizations. The impact of data

locality is well understood. Now, with the five theo-

rems of data access concurrency, we are ready for a

better understanding of pitfalls of current memory sys-

tems and for finding new opportunities for possible im-

provements.

Based on the L-C model, both CPU time and data

stall time can be reduced via C-AMAT reduction. The

memory performance optimization can be achieved by

optimizing one or more of the five parameters of C-

AMAT. Table 3 shows the techniques which can be

leveraged for data stall time reduction considering the

impact of these five parameters. The beauty of the the-

orems is that they quantitatively express the relations

between the parameters and the final performance. In

other words, the entries in Table 3 can be further evalu-

ated and quantified based on the theorems in our theo-

retical study.

Take Loop Interchange for an example, because data

reusability is improved,MR will be improved. Then ac-

cording to the theorems, pMR and pAMP will also be

improved. In this case, both AMAT and C-AMAT will

be reduced.

However, if only the hit concurrency and the miss

concurrency are improved, AMAT is not aware of the

optimization, but the data stall time model as given

by the L-C model shows a remarkable effect due to the

C-AMAT reduction.

Fig.15 shows three demonstrative examples. These

examples again confirm that concurrency has brought

in a new dimension of data stall time reduction, which

has not received its deserved attention. In addition to

software improvement, hardware methods can also be
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Table 3. Techniques Showing Impact on Data Stall Time

Class Item IssueRatio MR pMR AMP pAMP CH CM AMAT C-AMAT

Hardware techniques Pipelined cache access + ⊕ – ⊕ ⊕ – – ⊕
Non-blocking caches + ⊕ – ⊕ ⊕ – ⊕
Multi-banked caches + ⊕ – ⊕ ⊕ ⊕ – ⊕
Large IW & ROB, run-ahead + ⊕ – ⊕ ⊕ ⊕ – ⊕
SMT + – – ⊕ ⊕ ⊕ – ⊕

Compiler techniques Loop interchange + ⊕ + ⊕
Matrices blocking + ⊕ + ⊕
Data and control dependency
related optimization

⊕ ⊕ ⊕

Application techniques Copy data into local scalar
variables and operate on local
copies

+ ⊕ + ⊕ + ⊕

Vectorize the code + ⊕ + ⊕ + ⊕
Split structs into hot and cold
parts, where the hot part has
a pointer to the cold part

+ ⊕ + ⊕ + ⊕

Note: + or ⊕ means that the technique improves the factor, – means it hurts the factor, and blank means it has no necessary
impact. These notions are used in the same manner as those of Hennessy and Patterson[6].
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Fig.15. Impacts of concurrency on C-AMAT and AMAT. (a)
L1 data cache AMAT and C-AMAT when changing MSHR size.
(b) L2 Cache AMAT and C-AMAT when changing core number.
(c) L1 data cache AMAT and C-AMAT when changing pipeline
issue width.

deployed to achieve application awareness. Since fu-

ture architectures may present some configurability for

users[16], runtime hardware adaption is possible.

Table 3 presents an extended table of Fig.2.11 in

page 96 in [6] to summarize the impact of advanced

cache optimizations on AMAT and C-AMAT perfor-

mance parameters. Following [6], in Table 3, the rows

represent different optimizations, while the columns are

various optimization directions. The optimizations are

mostly chosen from the 16 memory-system optimization

mechanisms introduced by Hennessy and Patterson[6].

The plus, +, and the minus, −, results are from there

as well and are also confirmed in our simulations. Five

new columns are added for the four new parameters

and C-AMAT. The entries in the newly added columns

can be analyzed using the theorems, and actual values

can be determined via simulation.

According to the pMR theorem, pMR is the pro-

duct of IssueRatio expression and MR, and then,

based on the impact of IssueRatio and MR as given

in [6], the impact results in the pMR column can be

derived. Similarly, according to the pAMP theorem,

pAMP is the product of IssueRatio expression, MR,

and AMP , and then the results in the pAMP column

can be derived. According to the CM theorem, the re-

sults for CM can be derived. Finally, according to the

P-M model, the results for data stall time can be de-

rived.

Please notice that the row four of Table 3, hard-

ware techniques: large IW and ROB, run-ahead, is not

in the original table of Hennessy and Patterson[6]. The
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reason is that large IW and ROB, run-ahead[17] only in-

fluence C-AMAT and do not influence AMAT. Here we

only use the large IW and ROB, run-ahead to demon-

strate memory concurrency technologies have not re-

ceived their deserved attention. The list is far from

complete. Large MSHR size, multi-banks, and multi-

memory-channels are other “concurrency only” tech-

nologies, for examples. In addition, new concurrency

only technologies can be developed, if their contribu-

tion can be well defined and measured. Table 3 shows

the power of C-AMAT in unifying the impact of data

locality and data concurrency technologies, in bringing

up concurrency only technologies to the spotlight, and

in calling new technologies to utilize data concurrency.

There are 38 entries in Table 3 from C-AMAT

(marked with “cycle”), while only 21 entries are from

AMAT parameters. That shows the importance and

potential of data access concurrency, as well as C-

AMAT, in cache optimization. Please notice that the

table is created based on known cache optimizations

which are motivated by data locality optimization.

With the publication of this paper, we hope to see the

development of concurrency motivated cache optimiza-

tions. While 38 is an amazing number, the potential of

data access concurrency is clearly not fully explored by

Table 3.

Since data stall time is the primary data access over-

head, each parameter in the data stall time formulation

should be optimized. That is, we should reduce pure

miss rate and pure miss penalty and increase hit and

pure miss concurrency. However, we find that pitfalls

do exist in currency memory systems, which limit the

optimization of these parameters. These pitfalls are

mostly rooted in the inadequate consideration of data

concurrency in system evaluation.

IssueRatio in the theorems is a vital factor that

indicates the intensity of hit activities. Whenever a

hit access exists, there is no data stall. The larger

IssueRatio is, the more intensive the hit access is, and

thus the smaller data stall time will be.

As a typical case for benchmarks from SPEC, Fig.16

shows that the memory system has not received any

new requests in 70.6% clock cycles. That means, while

the SPEC applications are data active, the distribution

of their data access intensity is non-unified. This is a

pitfall. Following the pure miss concept, we want the

hit distributed as evenly as possible.

Assuming memory access issue number per clock cy-

cle is X, recall the CM theorem, X = IW ×fmem×(1−
fdata dep − fcontrol dep).
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Fig.16. Distribution law of data access issue number in each
cycle.

Then, as the probability of a new data access is is-

sued in a clock cycle, IssueRatio in the theorems can

be expressed as IssueRatio = P{X > 1}.
For Fig.16, IssueRatio = P{X > 1} = 29.4%. Be-

cause AMAT is larger than 50 cycles and IssueRatio,

29.4% is less than the threshold value, 45%, accord-

ing to the pMR theorem, the pure miss rate cannot be

reduced significantly (see Fig.3).

According to the distribution law shown in Fig.16,

the expectation of X is

E(X) =

6∑
i=0

i× P{X = i} = 0.672.

This means that there exist average 0.672 new ac-

cesses issued per clock cycle. If the memory accesses

can be issued evenly, then IssueRatio becomes 67.2%.

Then recalling the pMR theorem, the ratio between

pure miss rate and conventional miss rate can be re-

duced significantly (see Fig.3). Moreover, recalling the

pAMP theorem, the ratio between pure miss penalty

and conventional miss penalty also can be reduced (see

Fig.4). If the conventional miss rate and the conven-

tional miss penalty are constant or do not increase sig-

nificantly, then the final data stall time C-AMATstall

will be shortened.

With the help of L-C and P-M models, the theo-

rems, and Table 3, new research on reducing data stall

time can be carried out. Possible new directions in-

clude:

1) Developing techniques to increase data access is-

sue ratio, IssueRatio. Run-ahead and very large in-

struction windows techniques have been proposed for

this purpose, yet they have not been adopted in cur-

rent commercial processors[17].

2) Utilizing both memory locality and concurrency.

They are both included in C-AMAT and directly re-
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lated to data stall time (see the L-C and P-M models).

Their relationship has been shown in the theorems.

3) Paying attention to the control and data depen-

dencies fdata dep and fcontrol dep. While dependency is

not a new research topic, it is still unsolved and break-

through innovations are needed[18].

Miss concurrency working set, where misses occur

during the same time window (see the CM theorem),

is a new concept demanding special attention. It cap-

tures both locality and concurrency for misses. Concur-

rent data accesses with good locality may request the

same cache line in a burst manner, which would lead

to a pure miss and then cause a data stall. This ob-

servation calls for non-localized concurrent data access,

which presents a new opportunity for performance op-

timization against the conventional wisdom of locality.

In summary, the data stall time formulation pre-

sented in this work has reshaped the conventional com-

puter hardware and software design principle of “local-

ity is always good” and calls for a joint consideration

of locality and concurrency.

7 Related Work

Historically, the memory wall problem was studied

from the perspective of AMAT, which includes McKee’s

original memory wall work in 1994 and later work in

2004[1-2]. Decades later, in 2014, concurrency has be-

come as important as locality, but AMAT has inherent

limitations that prevent it from accurately characteriz-

ing modern computing systems.

Hennessy and Patterson recognized the inadequacy

of AMAT and introduced the term of non-overlapped

latency[6]. This is a redefinition of AMAT and is con-

ceptually correct. However, the method to determine

overlapped miss is not explored and a measurable for-

mulation is needed.

As data stall becomes more prevalent in many hard-

ware and software design issues, an explicit expression

of data stall time becomes an urgent need which has

yet to be satisfied. To illustrate this point, we present

the following examples.

First, an explicit expression of data stall time is

needed to review the memory wall problem. Over the

last two decades, processors have been equipped with

many concurrency-oriented features. However, AMAT

cannot reflect concurrency to illustrate the benefits and

losses of these techniques.

Second, (18) is proposed in [7] relating MLP to over-

all performance, where Cycles are total execution cy-

cles, Cyclesperf is the number of execution cycles if the

furthest on-chip cache is perfect, OverlapCM is the frac-

tional overlap of compute cycles with off-chip cycles,

NumMisses is the number of off-chip accesses, Miss-

Penalty is the latency of each off-chip access, and MLP

is the average memory level parallelism. As far as we

know, this is the work most similar to ours. However,

there are fundamental differences. The MLP is a special

case of our prior work Access Per Cycle (APC)[19-20],

which focuses on measurement rather than analysis.

With the L-C or P-M model rather than (18), we know

more detailed information since we distinguish between

the pure and non-pure miss and the miss and hit con-

currency.

Cycles = Cyclesperf(1−OverlapCM) +

NumMisses×MissPenalty/MLP. (18)

Third, scheduling heterogeneous multi-cores

through performance impact estimation (PIE)[21] uses

an approximate data stall time formula which is not ac-

curate. Better result of the scheduling can be received

if our formula is used to make the PIE with less errors.

Fourth, Wang et al. used an approximate formula

of data stall time as (19) that plays a key role in their

bandwidth partitioning[22]. The APC in (19) is com-

pletely different from the APC in our work[7-8]. In

our definition of APC, the cycles are memory active

cycles. They are not CPU cycles as those used in IPC.

However, in the APC of (19) used in [22], the cycle is

CPU cycle. Despite being simpler, (19) cannot present

information about locality and concurrency, let alone

the trade-off between them. Therefore, if the L-C or

P-M model rather than (19) is used, the result of the

bandwidth partitioning would be enhanced.

IPC = APC/API. (19)

Fifth, with locality information, cache can be mana-

ged efficiently[23]. While we cheer for the contribution

of [23], we find that it only uses locality information

and it can be drastically enhanced if guided with the

models introduced in this work.

Finally, Iakymchuk and Bientinesi aimed at model-

ing the performance of linear algorithms without exe-

cuting either the algorithms or any parts of them[24].

They proposed an analytical model based on the de-

tailed knowledge of the algorithm, though a general

runtime measurable data stall time formulation is not

given.

In summary, the data stall time formulation and

its associated mechanisms presented in this work are

promising tools to facilitate existing and future tech-

niques to reduce data stall time and to mitigate the
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memory wall problem, and Table 3 presents the pos-

sible ways to reduce data stall time, through utilizing

data access concurrency as well as data locality.

Due to its complexity, we have focused on single core

environments in this study. Please recall, C-AMAT can

be measured at each layer of a memory hierarchy[10].

In multiple-core systems, C-AMAT can be measured

for the private cache for each core respectively, and for

the shared L2 cache, a common C-AMAT can be mea-

sured for all the cores, and so on. The contention due

to shared resource is reflected in the C-AMAT. There-

fore, we can use the L-C model or P-M model for each

core respectively. While the model can be extended to

multi-core environments, we leave an in-depth study of

multi-core environments as a future work, and do not

discuss it further in this study.

8 Conclusions and Future Work

While the memory wall problem remains a test for

system design, the computing landscape has changed

from compute-centric to data-centric. This landscape

change requires a fundamental rethinking of memory

system design and optimization. Various advanced

memory technologies and optimizations have been de-

veloped to cope with the memory wall problem. Each

of them has their strengths, weaknesses, assumptions,

and limitations. How to combine these technologies for

an optimal memory system design and how to improve

existing technology are open research issues in the com-

puting community. In this study, with two models and

three theorems, we tried to provide a theoretical foun-

dation for the optimization of modern memory systems.

AMAT (Average Memory Access Time)[1,6] is the

conventional model of memory system design, which

considers the data locality for modern hierarchical

memory systems. C-AMAT (Concurrent AMAT)[10-11]

is a newly proposed model which extends AMAT to con-

sider both data locality and data concurrency. In this

study, we first derived a C-AMAT based CPU data stall

time model, named L-C (Locality-Concurrency) model.

Inherited from C-AMAT, the L-C model reflects the

combined impact of data locality and concurrency on

the final CPU time of the computing system. Next,

we introduced the P-M (Pure-Miss) model to formu-

late CPU time in terms of pure cache misses. It shows

the impact of pure miss on CPU performance. Equally

important, in proving the P-M model, we delivered an

explicit representation of the overlapping of computa-

tion and data access ((10)), which opens a door for

utilizing this overlapping. Compared with AMAT, C-

AMAT has two new performance parameters, concur-

rent hit and concurrent (pure) miss, and two redefined

performance parameters, pure miss rate and pure miss

penalty. Three theorems then were developed to chara-

cterize and optimize the four parameters, respectively,

where concurrent hit and concurrent miss are addressed

under one theorem. Finally, simulation tests were con-

ducted to verify and illustrate our theoretical findings,

and a table was presented to summarize the impact of

advanced cache optimizations on AMAT and C-AMAT

performance parameters. Thirty-eight entries in Ta-

ble 3 are contributed by C-AMAT parameters, while

only 21 entries are contributed by AMAT parameters.

This shows the importance and potential of data access

concurrency, as well as C-AMAT, in cache optimization.

Please notice that the table is created based on

known cache optimizations which are motivated by data

locality optimization. This study calls for concurrency-

based cache optimizations, which may or may not im-

prove data locality. In addition to increasing concurrent

hit, the P-M model and its associated computing/data

access equation presented in this study have shown two

new directions for concurrency-based cache optimiza-

tions.

All the results presented in this study are based on

C-AMAT. C-AMAT is a rethinking of memory perfor-

mance from a data-centric view. By the definition of

C-AMAT, its cycle is measured in terms of memory

active cycle, rather than the conventional CPU cycle.

Besides, its cycle is measured in overlapping mode, not

the conventional sequential mode[10]. It is a simple for-

mula but a very different one. C-AMAT requests some

deep thinking to fully appreciate its value and beauty.

In the future, we intend to continue conducting

study in the direction of data access optimization, per-

form more case studies on domain applications, and ex-

plore new optimization mechanisms based on the theo-

retical findings presented in this study.
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