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As the memory access footprints of applications in areas like data analytics increase, the latency overhead of

translation lookaside buffer (TLB) misses increases. Thus, the efficiency of TLB becomes increasingly critical

for overall system performance. Analyzing TLB miss traces is useful for hardware architecture design and

software application optimization. Utilizing cycle-accurate simulators or instrumentation tools is very time-

consuming and/or inaccurate for tracing and profiling TLB misses. In this article, we propose an efficient

and precise tool to collect and profile last-level TLB misses. This tool utilizes a novel software method called

Page Table Access Tracing (PTAT), storing last-level page table entries of certain workload processes into a

reserved uncached memory region. Therefore, each last-level TLB miss incurred by user process corresponds

to one uncached page table access to main memory, which can be captured and recorded by a hardware

memory bus monitor. The detected information is then dumped into offline storage. In this manner, full

TLB miss traces are collected and can be analyzed flexibly. Compared to previous software-based methods,

this method achieves higher performance. Experiments show that, compared with a state-of-the-art kernel

instrumentation method (BadgerTrap), which lacks complete dumping trace function, the speedup is still up

to 3.88-fold for memory-intensive benchmarks. Due to the improved efficiency and completeness of tracing,

case studies validate that more flexible profiling can be conducted, which is of great significance for TLB

performance optimization. The accuracy of PTAT is verified by both dedicated sequence and performance

counters.
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1 INTRODUCTION

It is well known that the multi-level translation lookaside buffer (TLB) performance impacts the
memory system performance, which is critical for overall computing system performance [8], [17].
Virtual memory is used to manage the allocation of physical memory resources to facilitate shar-
ing and enforce protection. Memory resources are managed in chunks (referred to as pages), the
granularity of which ranges from several KBs to many MBs or GBs [13]. Page tables are maintained
by the OS to store the page table entries (PTEs), which contain per-page virtual-to-physical ad-
dress translations together with page status bits. The physical counterparts of never-used virtual
pages are not created, and the contents of those pages not currently in use may be paged out to
tertiary storage so that those physical resources are reallocated to other processes. Each access to
main memory must undergo a virtual-to-physical address translation, which slows down the per-
formance and increases the energy. To mitigate such effects of this bottleneck, most CPUs include
a hardware structure, TLB, to cache the PTEs of recently accessed pages. Accesses that hit in the
TLBs will avoid the latency and energy costs of going to memory to access the page table. Similar
to multi-level caches in the memory hierarchy, multi-level TLBs have become a useful leverage for
boosting data access performance.

Applications in areas like data analytics have increasingly large memory access footprints,
which require increasingly large TLBs. Servers targeting such applications have thus been built
with ever larger main memory capacities, but there has been no commensurate growth in TLB
sizes. To see the significant impact of this mismatch, consider the adaptive radix tree [28] in-
memory database first, of which TLB misses account for 23% of the total index lookup time. Zhang
et al. [29] find that TLB translation bottleneck is getting worse when memory capacity grows.
Pandiyan et al. [23] show that using larger TLBs improves IPC and L2 utilization. Jacob et al. [15]
find that large TLBs are necessary for reducing memory management overhead, and the costs
of TLB miss interrupts will increase in future microprocessors. Using huge pages can reduce the
number of allocated pages and improve TLB efficiency. For example, in Intel x86_64 architecture,
4KB/2MB/1GB page sizes are supported. If an application requires 4GB of memory space, using
4KB size for page allocation requires 1M PTEs, while using 2MB or 1GB page requires only 2K or
4 entries, respectively. However, huge pages have more serious internal fragmentation problem
than small pages, which limits their effort and usage. Chen et al. [6] find that the column object is
the primary cause of TLB misses of the Graph500 BFS program [1], and the performance improve-
ment of using huge pages for the column object with multiple threads is much lower than that of
single-thread cases.

Designing high-performance and energy-efficient memory hierarchies require insights into the
behavior of current designs: when do they work well, and when do they fall short of expectations
[19]. Profiling the TLB misses is the prerequisite for memory system optimization. Designing both
efficient TLB architecture and TLB-friendly applications requires analysis of TLB miss behavior.

This article proposes an efficient and precise profiling method named Page Table Access Tracing
(PTAT). The PTAT method focuses on last-level TLB misses. Based on a hybrid hardware-software
method, Hybrid Memory Trace Toolkit (HMTT) [3], [11], the PTAT method monitors TLB misses
as memory reference traces. PTAT puts new allocated Linux user-space PTEs of a workload pro-
cess into a reserved uncached memory region (PTAT region). Since HMTT uses a hybrid hard-
ware/software tracing mechanism, it dumps out off-chip page table memory access traces gener-
ated by a modified Linux kernel. With the PTAT trace parser to parse the traces mentioned above,
it knows whether a DRAM main memory access is for page table or not. Thus, each last-level TLB
miss of a monitored workload process causes a read to PTAT region without caching, which is
captured by HMTT and further analyzed by trace parser. As the experiments show in Section 5,
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time overhead of the PTAT method is much lower than the BadgerTrap [8] method for memory-
intensive benchmarks selected from several commonly used benchmark suites.

The main contributions of this article are as follows:

—A novel method that dynamically puts page tables of workload processes to a dedicated
uncached region is proposed to force all TLB-missed page table entry memory accesses to
go to the memory bus and then be monitored by hardware snooping tools. To the best of our
knowledge, no methods similar to ours have been proposed for memory-snooping-based
TLB miss tracing.

—A novel tool implementation is proposed for collecting and analyzing detailed TLB miss
traces of workloads through a hybrid hardware/software mechanism, with lower overhead
(up to 3.88-fold) and less interference compared with other software methods. We testi-
fied correctness of the PTAT tool through a linear sequential per-page accessing program.
Experiments show that the time overhead of the PTAT method is only 15–54% of Bad-
gerTrap for memory-intensive benchmarks. The PTAT slowdown of the serial version of
RandomAccess [25] reaches the highest value of 8.67 under 1GB input data size.

—Two case studies of profiling per-page TLB miss distribution and huge page TLB misses
are conducted to identify hotspot data structures that incur the address translation over-
head, which provides valuable guidelines for further optimization. For example, we find
that SPECCPU2006 [9] 429.mc f generate about 63.5% of TLB misses in 5% of PTEs, with
orders of magnitude of more TLB misses than other workloads. We also find that while the
Graph500 BFS program turns to use huge pages for column object, the main cause of TLB
misses of BFS is changed from column object to rowstarts and pred object.

The rest of the article is organized as follows. Section 2 describes the related work. Section 3
presents the design of the PTAT method. Section 4 presents the implementation of the PTAT
method, including kernel modifications, PTAT controller, and PTAT TLB miss parser program.
Section 5 describes the verification and evaluation results. Section 6 describes the case studies of
per-page TLB miss profiling. Section 7 discusses usage extensions of the PTAT method. Finally,
Section 8 concludes the article.

2 RELATED WORK

There are several ways to collect traces or statistics for TLB misses, including cycle-accurate soft-
ware simulation, hardware counters, kernel instrumentation, and hardware snooping.

2.1 Cycle-Accurate Simulation

For memory access behavior profiling, the advantage of software simulation is on accuracy,
but the speed is remarkably low. Full-system cycle-accurate simulators, such as QEMU [4],
GEM5 [5], SIMICS [20], and MARSSx86 [24], support booting the operating system directly,
simulating kernel privileged operations, and emulating hardware devices. Full-system simulators
reach a higher accuracy because of these features. However, they are often too slow to generate
full-system simulations, especially for measuring the performance impact of TLB misses, making
running large-scale program unacceptable. Cycle-accurate simulators for memory management
unit (MMU) research have the following disadvantages [8], especially for being compared with
our PTAT method. First, rare events such as TLB misses require long simulations for their
performance management, especially with tracing. For example, we measured that the speed of
GEM5 is 50–500 KIPS for most workloads. Second, a cycle-accurate simulator requires a long
startup time to initialize memory for big-data workloads. Third, a simulator often loses accuracy
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when it comes to real system optimization, including TLB misses, since the design details (e.g.,
the replacement policies) of commercial processors are often not available for common users.

2.2 Hardware Performance Counters

Hardware performance counters are useful, fast, and low-overhead tools for memory access be-
havior profiling, but cannot provide detailed memory addresses. These counters provide accurate
event statistics, e.g., cache misses and TLB misses. Oprofile [2], VTune [14], and PAPI [21] read per-
formance counters through interrupts or system calls by sampling. TopMC [10] enables us to read
and collect performance counters in Linux user or kernel level directly through low-cost instruc-
tions. Liu et al. [18] proposed a data-centric memory behavior analysis method using a hardware
performance counter. However, hardware counters do not provide complete and detailed mem-
ory reference traces with memory addresses while PTAT provides complete and detailed memory
reference traces with memory addresses. For example, hardware counters cannot distinguish TLB
misses of different processes or different memory regions.

2.3 Kernel Instrumentation

BadgerTrap [8] is described as a tool that allows online instrumentation of TLB misses. However, it
uses a kernel instrumentation method rather than a binary instrumentation method. BadgerTrap
v1.0 works under Linux x86-64 kernel v3.12.13 for creating and analyzing TLB miss traces. This
tool converts page walks from hardware-assisted to software-assisted and uses software-assisted
page walks to instrument TLB misses. BadgerTrap intercepts each hardware-assisted page walk
and converts it into a page fault when an x86-64 TLB miss occurs. BadgerTrap sets a reserved
bit in a PTE to intercept the hardware page walker, which makes the page walker throw a page
fault exception with RSVD flag. A new software-assisted TLB miss handler in a modified kernel,
which can be extended for online analysis, deals with the exceptional page fault and is used to
distinguish TLB misses of different processes or different regions on the fly. However, extensions
to the software-assisted TLB miss handler are still hard to dump out complete detailed TLB miss
traces as the PTAT method for memory-intensive workloads. The reason is that writing detailed
traces to disk is much slower than generating the TLB misses of memory-intensive workloads.
Even without dumping function, the slowdown of workloads generated by BadgerTrap is about
1.58 to 29.1, according to our evaluations.

2.4 Hardware Snooping

Various hardware snooping tools have been proposed to monitor memory trace online, such as
Lecroy Kibra 480 analyzer [16], SuperTrace [26] (for embedded systems), and other DDR3/DDR4
bus snooping tools [22]. However, logic analyzers are mainly used for hardware debugging, due
to limited data collected and lacking software information.

HMTT [3], [11] is a hybrid hardware/software memory trace monitoring system. HMTT is com-
patible to DDR3 SDRAM, and it monitors memory reference traces including multi-level page table
accesses, using a hardware snooping technology. HMTT was also enhanced to support various in-
formation collection [6], [7], [12]. HMTT uses an extra hardware, called HMTT board, which acts
as a DIMM adaptor. HMTT board monitors all memory transaction signals on the DDR3 command
bus when installing between the motherboard DIMM slot and the DRAM DIMM. The FPGA logic
on the HMTT board interprets DDR3 protocol and further reorganizes the corresponding memory
references. Thus, all memory traces are captured at cache block granularity (e.g., 64 bytes).

For offline trace analysis, an HMTT trace parser uses a reverse page table (RPT) [6], [11] struc-
ture, which is used for looking up the corresponding virtual address for each physical address in
the DRAM access trace. The physical-to-virtual mapping is acquired by dumping the page table
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of the OS for each process to build a RPT. A high-level event-coding mechanism is also used in
HMTT, which encodes semantic information (e.g., page table update) into the memory address
space.

Through the event-coding mechanism, HMTT also identifies the memory references of page
table walks with a corresponding process identifier from other regular data access. However,
the original HMTT cannot distinguish the memory references among different levels of page
table walks. Moreover, the original HMTT does not support dumping huge page tables. It should
be emphasized that TLB misses often generate fewer capturable page table entry accesses to main
memory because of caching. For example, comparing cached page table access traces to uncached
page table access traces, based on the HMTT method, our experiments show that at least 96% of
TLB misses of mcf and canneal workload hit in the cache hierarchy. For cactusADM, astar, and ray-

trace workload, the TLB misses which hits in the cache hierarchy are even more than 99%. Thus, the
original HMTT cannot capture detailed, precise TLB miss traces without a mechanism like PTAT.

The following two issues for snooping-based TLB miss-tracing tool remain unsolved, which will
be addressed in our PTAT design. The first issue is how to ensure TLB miss entries are uncached,
and to ensure corresponding page table walks are recognizable by snooping-based tools; the second
issue is how to identify which user page access triggered the page walk for a current page table
entry.

3 DESIGN OF PTAT

For fast and precise last-level TLB miss trace-generating, this article proposes the PTAT method.
The main idea is to use hardware snooping tools such as HMTT to capture the page table entry
addresses when TLB miss occurs.

For the first issue, as page tables are often being cached, it is likely that a TLB miss may not cause
a read access to the page table copy in main memory. However, if last-level PTEs are allocated to an
uncached memory region, any corresponding TLB miss will cause an uncached read access to this
region. The read accesses to this region are captured and recorded by hardware snooping tools.
The PTAT method works as follows. At the kernel boot time, PTAT marks a manually preselected
continuous “PTAT region” as reserved and uncached. This region is managed independently after
booting is finished. When a target workload process is started, the modified kernel puts its page
table to the PTAT region. Then each TLB miss of the target process will cause an external memory
access to the PTAT region that enables external monitoring. It is easy for hardware to monitor the
PTAT region, which makes page walks caused by TLB misses recognizable. Although the OS might
also require multiple memory accesses to PTEs during virtual-to-physical mapping changing, these
kinds of cases rarely happen for most common applications, according to performance counter
results in Section 5.

For the second issue, to regenerate the corresponding process ID and the virtual page address
of TLB misses, physical address traces captured by HMTT as well as dumped mapping informa-
tion will be combined and analyzed offline. The physical-to-virtual mapping and page table entry
storage location are acquired by dumping to a kernel buffer whenever the mapping information
changes. Encoded semantic information is sent and captured by HMTT for synchronization at the
same time. For detailed offline analysis, the physical locations of PTEs are extended to the original
dumping scheme. We also considered fixed 2MB huge page cases. In parts of Linux kernel, fixed
2MB huge PTEs use the same pte_t data type as normal 4KB PTEs. Thus, for fixed 2MB huge page
TLB miss support, dumping logic modifications for distinguishing huge PTEs from normal ones
are necessary. Figure 1 illustrates our PTAT method.

As illustrated in Figure 1, the monitoring system utilizes one or several hardware monitor boards
plugged into DIMM slots of a traced system. The DDR3 memories of the traced system are plugged
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Fig. 1. The PTAT method. This method includes five steps. Note that memory tracing and page table tracing
are conducted in parallel.

into the DIMM slots integrated on the hardware monitoring boards. The boards snoop on all mem-
ory commands via DIMM slots. For TLB miss tracing, workload PTE allocation to the PTAT re-
gion is needed. An on-board FPGA converts the commands into memory traces in this format
< address, r/w, timestamp >, including PTAT region traces. Each hardware monitor board gen-
erates trace separately and sends the trace to its corresponding receiver via PCIe cable. With the
synchronized timestamps, the separated traces are merged in the trace replay phase. Meanwhile,
a module injected into OS kernel collects page table information, which is extended with PTE
addresses and synchronizes the information with the PTAT memory trace dynamically. Then the
page table information is used to reconstruct physical-to-virtual mapping information. Based on
the information, i.e., memory trace, virtual-physical mapping and synchronization tags, we per-
form trace replaying procedure precisely and efficiently for offline analysis. A TLB miss trace
parser is used for trace replay and offline analysis.

4 IMPLEMENTATION OF PTAT

Based on the main idea given above, our PTAT method is implemented as three components: kernel
modifications, the PTAT control program, and the PTAT TLB miss trace parser.
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4.1 Kernel Modifications

Kernel modifications play the critical role in PTAT implementation. Besides those modifications
used by the original HMTT [11] to implement the PTAT method, primary modifications are de-
scribed as follows:

4.1.1 Prepare PTAT Region. The beginning address, the end address, and the region size are
defined as macros to allocate a continuous memory region in the kernel for PTAT. These macros
define a 256MB memory region. It is also required to reserve this region from being used for
other purposes and keep this region uncached to keep out of interference. We use a regular kernel
function, which sets the region’s e820 memory state to E820_RESERVED_KERN after common
state initialization. The E820_RESERVED_KERN state means that this region is used for Linux
kernel only (e.g., used for storing page tables and supporting variables).

To set this region as uncached, we add a function in the kernel. This function is called after the
normal MTRR setting process while booting.

4.1.2 PTAT Region Allocator and Deallocator. The original Linux kernel uses a buddy memory
allocator for allocating regular unreserved physical memory space to PTEs. However, because of
the complexity of Linux buddy memory allocator implementation, to extend it for PTAT purpose is
difficult. Thus, we use a simple, linear-based management method. A simple memory control block
structure takes one-page size (4KB) for each in PTAT region, which is used to identify whether its
next page is available or not. PTAT entries use the memory control block structure with PTAT
page allocation and deallocation function (works similarly to malloc () and free()) and supporting
variables. A sequential search for available space is used in PTAT page allocation function to al-
locate a page in PTAT region for storing page table, to find out whether a page is available in the
corresponding control block. When PTAT region first works, an initialization function is called,
which sets values to supporting variables. Note that the linear-based management of PTAT method
does not affect regular (i.e., not PTE) memory allocation and usage behavior of workloads since
the Linux buddy allocator still manages regular workload memory requirements.

4.1.3 Instrument Linux Page Table Entry Allocation. Compared with a dedicated global variable,
the kernel knows whether a process ID belongs to the required workload process for PTAT page
table entry allocation and deallocation. The workload process ID is passed to the module through
the sys f s file system while the PTAT module gets loaded into the kernel.

However, simple modifications to page table entry allocation functions cause various kernel
bugs, parts of which correspond to incorrect spinlock usage and page zones. For this reason, spe-
cialized PTAT entry allocation functions and corresponding macros are defined for correctly re-
placing common ones. For TLB miss instrumentation, various functions, which call page table
entry allocation functions directly or indirectly, especially for functions handling page faults, are
extended with PTAT entry allocation functions and pid switch logic. If pid of the current process
equals the required workload process ID, the current process is assumed to belong to the required
workload.

Similarly, for PTAT entry deallocation, the page table entry deallocation function is extended
with PTAT entry deallocation functions and pid switch logic described above.

4.1.4 Dump Page Table Tracing with Virtual-to-Physical Mappings. We only need to add a small
amount of extra information to achieve this purpose, since the original HMTT already has ker-
nel function modifications to dump page tables. Given a hardware platform with a 16GB main
memory, for example, to map a 16GB memory space requires at least 222 of 4KB pages, i.e., each
corresponding physical page number requires at least 23 bits, smaller than 3 bytes (24 bits). The
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Fig. 2. The PTAT trace collecting procedure. We use a PTAT control program besides of the original HMTT
control program.

page table dumping functions call a function to output a 13-byte trace entry to a binary file, in-
cluding trace type (1 byte), process ID (4 bytes), physical page number (3 bytes), and virtual page
number (5 bytes). Thus, we just need to add an extra trace output for 13 bytes PTE physical ad-
dress after each virtual-to-NORMAL-physical (“NORMAL” means not PTE) mapping trace. Simi-
larly, to map a 256GB memory space requires at least 4 bytes of each physical page number. Under
x86_64 architecture, both common and uncached PTEs are allocated in a virtual address space
(from 0xffff880000000000 to 0xffffc7ffffffffff), which space is direct mapping to all physical memory.
Thus, an address bit calculation is used to calculate the physical address from the virtual address
of page table entry pointer.

4.1.5 PTAT Control Module. A PTAT kernel control module is designed for passing command
and workload process IDs to the kernel by control programs. Currently, only one process is set to
use PTAT at one time during each workload running.

4.2 PTAT Control Program

For controlling the PTAT dumping process, besides the original HMTT control program, we use
a PTAT control program. Figure 2 illustrates the PTAT trace collecting procedure. Description of
the PTAT dumping process is as follows. First, the HMTT control program tells HMTT hardware
to open a PTAT TLB miss trace file for tracing hardware addresses of page walks, and tells kernel
module to open a page table trace file for tracing page table. Then the HMTT control program
begins to wait for workload dumping. Next, the PTAT control program uses a Linux system call
fork() to run and get the process ID of the workload process (as a child process of the control
program). Before the workload process gets running, sleep() for 1 second and use PTAT device
module function to set workload process ID. For the main process of PTAT control program, it
opens the sysfs described above as a file, and write the required process id to the path. Then use
ioctl() to pass the process id to a global variable of Linux kernel. Third, the PTAT control program
calls execvp() to run the workload process. Then, both TLB miss traces and page table traces of the
workload begin dumping. Finally, when the workload process finished running, save and close the
PTAT TLB miss trace file and the page table trace file.

4.3 PTAT TLB Miss Trace Parser

The trace parser builds RPT [11] structure with dumped physical-to-virtual mapping and storage
locations of PTEs. For TLB miss trace parsing, the first step is looking up RPT to find out whether
a memory read trace belongs to a page table entry with virtual-to-physical mapping info. If true,
the memory read trace is considered as corresponding to a TLB miss. Next, RPT updates the state
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ofthe corresponding entry address in it to the missed state. Corresponding TLB miss statistics also
update during the analysis process.

5 VERIFICATIONS AND EVALUATIONS

In this section, at first, we will show the experimental setup for PTAT verifications and evaluations.
Next, we will testify the correctness of the PTAT method through a linear sequential per-page
accessing program. Third, we will focus on evaluating the runtime overhead of collecting TLB miss
traces and TLB miss counts of memory-intensive workloads using the PTAT method, compared
with the TopMC [10] method. The TopMC method collects both D-TLB load misses and D-TLB
store misses by reading performance counters.

5.1 Experimental Setup

For verification and evaluation, we use two different hardware platforms, Platform A and Platform
B. Both Platform A and Platform B use Intel Xeon CPU E5-2620 v2 processors, which work under
2.10GHz with HyperThread enabled. The E5-2620 v2 processor has 6 cores, 12 physical threads,
and 3-level caches. Each L1 instruction or data cache is 32KB and each L2 cache is 256KB. Both
the L1 and the L2 are private caches. The L3 cache is 20-way 15MB and shared by all 6 cores in the
processor. The cache block size is 64 bytes for all caches in the hierarchy. For Platform A with two
E5-2620 v2 processors, the total capacity of the physical memory is 256GB with eight dual-ranked
of DDR3-800MHz. For Platform B with one E5-2620 v2 processor, the total capacity of the physical
memory is 16GB with one dual-ranked of DDR3-800MHz.

As the baseline OS environment, we use CentOS 6.6, an enterprise Linux distribution. For Linux
x86-64 kernel, we choose versions 3.10.93 and 3.12.13 with the transparent huge page (THP) dis-
abled for Platforms A and B, respectively. We use a lightweight profiling tool TopMC to read per-
formance counters for TLB miss. TopMC works like PAPI without using system calls. We also use
BadgerTrap [8] described in Section 2 for performance overhead comparison to PTAT for Platform
B due to Linux kernel version restrictions. For the BadgerTrap method, we use default TLB miss
statistic outputs, which do not include full TLB miss traces.

For 4KB page performance evaluation, we use both Platform A and Platform B. For Platform
A, first, we have evaluated 29 benchmarks (i.e., nearly the entirety) of SPECCPU2006 benchmark
suite through the PTAT method and the TopMC method, and 16 benchmarks of PARSEC bench-
mark suite through the TopMC method. Next, we have selected five integer benchmarks and one
floating-point benchmark (cactusADM) from SPEC2006 as single-thread workloads, and raytrace

(RT) and canneal (CN) from PARSEC as multi-thread workloads for data presentations. We select
these memory-intensive workloads from corresponding benchmark suites by using the ratio of
TLB miss counts divided by L1 cache replacements, with 15% as a borderline to identify whether a
benchmark is memory-intensive and selected for evaluation. For Platform B, we have selected two
integer benchmarks and four floating-point benchmarks from SPEC2006 as single-thread work-
loads, fft from SPLASH-2, streamcluster (SC ), x264 from PARSEC, the OpenMP, and the serial ver-
sion of HPCC RandomAccess (RA) Benchmark as multi-thread workloads. We use reference data
set and one iteration for SPEC2006 workloads. For 2MB huge page performance evaluation, we
use Platform B and have selected sequential version of Breadth-First Search (BFS) program from
Graph500, and the serial version of HPCC RandomAccess (RA) Benchmark as single-thread work-
loads. For the BFS program, similar to work of Chen et al. [6], we choose scale 23 and edge factor
16 (generates a nearly 2GB graph), focus on the performance of running BFS step, and just store
the column object of the BFS program in 2MB huge pages (allocated through Linux hugetlbfs file
system). For the serial version of HPCC RandomAccess Benchmark, we choose 1GB, 2GB, 4GB as
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Fig. 3. The TLB miss counts comparison (Platform A, 4KB PTAT). The relative TLB miss error between the
PTAT method and the TopMC method is less than 18%. For two PARSEC multi-thread workloads, the relative
TLB miss error between the PTAT method and the TopMC method is less than 8%.

different scales, and store theTable object in 2MB huge pages. To measure an actual running time
of the workloads with both PTAT and TopMC, we use Linux command time .

5.2 Function Correctness Verifications

Two experiments are designed to verify the correctness of TLB miss trace collected by the PTAT
method.

First, we build a linear sequential per-page accessing program. Since all memory accesses are
predictable, we compare the access trace with predicted sequence one by one. This program maps
a reserved and uncached memory region and reads first address in each 4KB page of the uncached
region in increasing order. It also outputs the first virtual address of the uncached region. Through
offline trace analysis, we get sequential reads equal to uncached page counts, and find that each
accessed address of an uncached 4KB page corresponds to a previously missed page table entry
address. The trace perfectly matches expected memory access and TLB miss behavior, thus par-
tially verifies the correctness of the PTAT method. For fixed 2MB huge page (opposed to THB)
TLB miss verification, we also build a similar program, which maps a reserved uncached memory
region using the hugetlbfs file system. The offline trace analysis for this huge page program also
matches our expected behavior of memory access and TLB misses.

Second, we compared the statistical result of PTAT trace with performance counters for real
workloads. Figure 3 illustrates the TLB miss counts comparison of the selected workloads for the
PTAT method under Platform A, compared to performance counter values collected by the TopMC
method. We use a metric called relative TLB miss error (RE), which is defined as Equation (1), where
MPTAT and MTopMC means TLB miss count of PTAT and TopMC, respectively:

REPTAT = 1 − MPTAT

MTopMC
. (1)

For multi-thread workloads, p1, p2, p4, and p8 stand for running with 1, 2, 4, and 8 threads,
respectively. It shows that 429.mc f and 436.cactusADM generate orders of magnitude more
TLB misses than other workloads. For all workloads, the TLB miss count captured by the PTAT
method is smaller than that captured by the TopMC method. The relative TLB miss error between
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Fig. 4. The slowdown of different workloads under 4KB page configurations. For single thread workloads,
429.mc f and 436.cactusADM get the highest slowdown. For multi-thread workloads, RandomAccess p1 gets
the highest slowdown.

the PTAT method and the TopMC method is less than 18%. For two PARSEC multi-thread
workloads, the relative TLB miss error between the PTAT method and the TopMC method is less
than 8%. Since the TopMC method does not distinguish TLB misses of workload processes from
other processes, the performance counters of processor cores running workloads suffers from
significant interference due to process scheduling, leading to higher counts than the actual case.

5.3 Performance Evaluations

We compared the performance of PTAT with that of BadgerTrap under the same workloads. It
should be emphasized again that BadgerTrap does not have a trace output function by now, al-
though it is possible theoretically with more overhead. Thus, the BadgerTrap result only means
its instrumentation part of the overall overhead. The original HMTT seldom interferes with work-
loads [3], [11]. For each page table walk progress of normal memory access, one access to an
uncached PTE (i.e., in main memory) takes up to 10 times longer latency than a cached PTE. Thus,
the performance overhead of the PTAT method mainly comes from the uncached PTE accesses
because of the page table walk progress. Figures 4 and 5 illustrate the relative workload running
slowdown of PTAT and BadgerTrap methods, compared to the original running time while run-
ning selected workloads (lower is better). Hardware counter methods such as TopMC seldom in-
terfere with workloads. Figure 4(a) illustrates the PTAT slowdown of different workloads under
4KB page configurations of Platform A, compared to baseline running. For single-thread work-
loads, 429.mc f and 436.cactusADM get the highest slowdown of 10.5 and 10.4, respectively. For
multi-thread workloads, raytrace p8 gets the highest slowdown of 3.27 times, which decreases to
1.54 times while running with two threads. For canneal workload, running with one thread gets
the highest slowdown of 2.8 times.

Figure 4(b) illustrates the PTAT and BadgerTrap slowdown of different workloads under 4KB
page configurations of Platform B. In Figure 4(b), the OpenMP version of the RandomAccess
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Fig. 5. The slowdown of the serial version of RandomAccess under 4KB page and 2MB huge page configura-
tions. Both PTAT and BadgerTrap reach the smallest values at 4GB input data size.

benchmark is used. For all workloads, BadgerTrap gets a higher slowdown value. For single-thread
workloads, 436.cactusADM gets the highest slowdown of the BadgerTrap method of 29.1, with a
value of 7.50 of the PTAT method. 437.leslie3d gets the lowest PTAT slowdown for 1.16 times,
with a BadgerTrap slowdown for 1.58 times. For multi-thread workloads, RandomAccess p1 gets
the highest PTAT slowdown for 7.89 times, which decreases to 6.73 times while running with 2
threads. RandomAccess p1, p2 also reaches a slowdown of the BadgerTrap method higher than the
slowdown of the PTAT method, at 20.3 and 18.6 times, respectively. Overall, the time overhead
of the PTAT method is only 15–36% of BadgerTrap for memory-intensive benchmarks under 4KB
page configurations. The speedup of the PTAT method over the BadgerTrap method is up to 3.88-
fold. Compared with the performance counter and instrumentation methods, the PTAT method
achieves the modest runtime slowdown and the best information completeness.

Figure 5 illustrates the slowdown of different workload scales and page sizes under Platform B. In
Figure 5, the serial version of theRandomAccess benchmark is used. Under 4KB page configuration,
we find that both PTAT and BadgerTrap reach the smallest values at 4GB input data size, of 6.23
and 11.1, respectively. Also, both PTAT and BadgerTrap reach the highest values at 1GB input
data size, of 8.67 and 15.3, respectively. The ratio of the slowdown of the PTAT method over the
BadgerTrap method is steadily from 56% to 57%. Under 2MB huge page configuration, while the
input data size of RandomAccess grows, both PTAT and BadgerTrap generate a slightly increasing
slowdown. Under 2GB and 4GB input data size, the slowdown of BadgerTrap gets even higher
values than 4KB page configuration, reaches 14.0 and 14.1, respectively. The ratio of the slowdown
of the PTAT method over the BadgerTrap method is steadily from 43% to 44%.

6 CASE STUDIES OF PROFILING

To demonstrate the ability for the per-page statistic, we analyze the distribution of TLB miss counts
among PTE physical addresses using PTAT under Platform A and Platform B. Per-page huge page
(libhugetlbfs) TLB miss distribution results are also shown.
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Fig. 6. The average number of TLB misses (Platform A).

6.1 Per-Page TLB Miss Distribution

As HMTT hardware generates memory read trace at 64-byte (Platform A) or 32-byte (Platform B)
granularity, reads to 8 (Platform A) or 4 (Platform B) continuous PTE address (8 bytes for each)
generate the same memory reference traces. Thus, PTAT trace parser program generates aver-
age counts of TLB misses for per-page analysis in each 8 (Platform A) or 4 (Platform B) continu-
ous allocated TLB entries rather than each TLB entry. Figures 6(a) and 6(b) illustrate the average
number of TLB misses under Platform A, collected through the PTAT method for single-thread
and multi-thread workloads, respectively. The x-axis illustrates the percentage of TLB entry ad-
dresses that are sorted by TLB misses in increasing order. For single-thread workloads, except for
436.cactusADM and 473.astar , their average number of TLB misses increases slowly until the per-
cent of TLB entry addresses reaches 80%. For multi-thread workloads, using 2, 4, and 8 threads
get similar TLB miss distribution behaviors using only single thread. The raytrace and canneal
workload have a nearly constant average number of TLB misses in lower 50% and 75% of sorted
TLB entry addresses, respectively.

Figures 7(a) and 7(b) illustrate cumulative distribution function (CDF) of the per-page TLB
miss for single-thread and multi-thread benchmarks under Platform A, respectively. These results
provide valuable insights for TLB miss optimization. The x-axis illustrates the percent of TLB
entry addresses that are sorted by increasing TLB misses order too. The y-axis illustrates the
percent of total TLB miss counts in previously sorted TLB entry addresses. For single-thread
workloads, more than 50% of total TLB misses are generated from 25% of the TLB entry addresses.
Especially, for 429.mc f , more than 63.5% of TLB misses are generated from the last 5% of
sorted TLB entry addresses. For multi-thread workloads, more than 80% of total TLB misses are
generated from 20% of the TLB entry addresses. The PTAT method helps to identify pages and
corresponding data structures, which cause major address translation bottleneck. Thus, using this
method for workload optimization is a well-considerable choice.

6.2 Huge Page TLB Misses

Figure 8(a) illustrates the normalized performance speedup with huge page configuration for the
BFS program and serial version of HPCC RandomAccess (RA) benchmark under Platform B. Note
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Fig. 7. The CDF of the per-page TLB miss (Platform A).

Fig. 8. Performance speedup and TLB miss comparison of BFS and RandomAccess (serial). Through putting
the column object into 2MB huge pages, BFS achieves up to 66% TLB misses reduction and results in 13%
performance improvement. For RandomAccess , about 2–7% TLB miss reduction is achieved by huge pages,
which results in a maximum 36% speedup under 4GB input data size.

that the normalized performance speedup is measured under the original Linux environment with-
out PTAT. Figure 8(b) illustrates the ratio of TLB misses of BFS and RandomAccess with the huge
pages over those with 4KB pages only for the PTAT method under Platform B. Figures 9(a) and 9(b)
illustrate CDF of the per-page TLB miss of BFS and RandomAccess under Platform B, respectively.

First, we analyze the evaluation results of BFS . The column object is the main cause of page
memory walks in the BFS program, and the next main cause is the rowstarts and the pred objects
[1], [6]. Through putting the column object into 2MB pages, the number of page memory walks
caused by the column object reduces. Thus, it achieves up to 66% TLB miss reduction that results
in 13% performance improvement. Due to inner-vertex continuous access behavior of the column
object, the BFS program generates 2MB huge page TLB misses under huge page configuration for
about 1% of total misses under normal 4KB page configuration. As the column object uses only 2MB
pages under proposed huge page configuration, the main cause of TLB misses of BFS is changed
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Fig. 9. The CDF of the per-page TLB miss of BFS and RandomAccess (serial). BFS generates fewer “hot pages”
while putting the column object into 2MB huge pages. All huge pages of RandomAccess generate TLB miss
count values nearly equal.

from column object to the rowstarts and the pred objects. Under normal 4KB page configuration,
BFS reaches more than 90% of total TLB misses from the last 15% of the sorted TLB entry addresses.
Using huge pages for BFS , it generates not only significant TLB miss reduction but also fewer “hot
pages,” which caused most (about 80%) of total TLB misses.

ForRandomAccess , only about 2–7% TLB miss reduction is achieved by huge pages, which results
in a maximum 36% speedup under 4GB input data size, however. The main cause of TLB misses
under huge page configuration of RandomAccess is still the Table object in 2MB pages. As the
input data size of RandomAccess increases, it generates a constant per-page TLB miss distribution
behavior for both huge page and 4KB-only configuration. Thus, we only show per-page TLB miss
distribution of 4GB input data size in Figure 9(b). All huge pages of RandomAccess generate TLB
miss counts values nearly equal, which take about 40% of walked pages. This result is due to
random access behavior of the Table object huge pages in the workload.

7 DISCUSSIONS

The PTAT method can be further extended to analyze various kinds of page walk statistics.
First, statistics of nested page tables for virtualized platforms can be gathered [27]. To do this,

dumping nested page tables, marking hypervisor, guest machine, and guest workload process IDs
are needed.

Second, this work can be extended to support collecting TLB miss traces from multiple workload
processes simultaneously. However, as page table is shared among different threads of the same
process, to distinguish memory accesses of a thread from those of other threads in the page walk
progress is hard.

Third, the PTAT method dumps page table from the Linux kernel to get the virtual address of
a TLB miss. Thus it can be used to identify whether a TLB miss corresponds to the code segment,
program stack, or any program object. Detailed instrumentations to the Linux kernel are needed
to do this.

Fourth, supporting THP TLB miss statistics is required as THP in Linux are widely used in
modern systems for improving TLB efficiency. Proper instrumentations to huge page allocation
logics are needed to do this.
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Fifth, modifications of control bits in PTEs by OS can be collected for page permission profiling.
These accesses can be pulled from creations of entries through extra instrumentations to kernel
functions.

Finally, the PTAT method can be extended for monitoring accesses to any specific data structures
of Linux kernel by moving data structures to uncached regions. It should be emphasized again that
the OS does not change mapping frequently for most common applications, which means that our
PTAT method seldom interferes with workloads.

8 CONCLUSIONS

This article proposes a novel tool PTAT for detailed TLB miss tracing and profiling. The PTAT
method works by putting new allocated Linux user-space PTEs of workload processes into a re-
served uncached memory region. TLB misses of monitored workload processes will cause DRAM
read operations to the PTAT region, which are captured by hardware monitors and dumped into
the offline storage for further analysis.

Compared with dedicated memory access sequence and performance counters, the PTAT
method presents accurate results. Thus, the correctness of the PTAT method is well-verified. Ex-
perimental results show that the runtime overhead of PTAT is significantly lower than the previ-
ous software-based BadgerTrap method, especially under memory-intensive workloads. Through
various detailed TLB and memory corresponding statistics, it is shown that, in the case studies,
workload or system software optimizations for memory access can be promoted by the tracing
and profiling results of PTAT.
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