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Abstract—On modern multi-core machines, page coloring has
been used to alleviate the competition at Last Level Cache (LLC).
However, the latest development of CPU architecture has brought
new issues to page coloring. Firstly, in the case of three-level
cache, previous works about page coloring did not discuss the
impact on L2 cache of color allocation and the competition for L2
cache is not considered concurrently under hyper-threading. In
addition, as the last level cache structure is changed from shared
to slice-based and undocumented hash function is applied, page
coloring is more complex and slice information is also not fully
utilized.

This paper presents solutions to these issues. Firstly, by making
small changes to the traditional page coloring, the problem that
page coloring may waste L2 cache is alleviated. At the same
time, we rethink the vertical allocation of L2 cache and LLC
in page coloring under hyper-threading, and discuss the impact
of color allocation on programs, especially those with different
sensitivity to L2 cache and LLC. Finally, we make full use
of slice information and propose Partial Conflict Color (PCC).
At the same time, we also propose a fast method to obtain
PCC. Experiments show that using PCC can improve system
performance when the number of colors is insufficient.

I. INTRODUCTION

With the development of chip technology, system designers

place more processor cores on a single chip, and hyper-

threading technology is proposed to improve thread/task level

parallelism. The Last Level Cache (LLC) design of recent

processors has changed. Specifically, the Intel LLC is divided

into multiple slices, and cache lines are mapped to different

slices by an undocumented hash function. As the processor

structure is changed, the method of cache partition has also

changed. Last Level Cache partitioning is a popular solution

to reduce or eliminate interference across applications co-

running on multi-core processors. A few approaches have been

proposed, which can be roughly divided into three categories:

way partitioning, page coloring and the combination of way

partitioning and page coloring.

Way partitioning is achieved by assigning a subset of the

cache ways to different cores, thus divvying up the last-level

cache space. Way partitioning has little cost on hardware

implementation, but it reduces the associativity of each par-

tition, adding cache misses [12]. The second method is page

This work is supported by National Key Research and Development Plan of
China 2017YFB1001602, NSFC (National Science Foundation of China) No.
61772497 and No. 61521092, State Key Laboratory of Computer Architecture
Foundation under Grant No. CARCH2601.

coloring. By modifying OS, the pages with same color bits

in their page numbers (the page frame ID overlaps the cache

index) are grouped into one color. Pages of different colors

occupy different LLC. This approach has been adopted in

real operating systems. The third method of partitioning cache

is SWAP (Set and Way Partitioning) [10], which provides

hundreds of fine-grained cache partitions. Among the three

methods, page coloring is the most widely used methods,

which requires no hardware modification and only needs to

modify the OS. Therefore, a lot of researches are based on

page color. Such technique was adopted by commercial OS

such as Solaris, FreeBSD, netBSD, and Windows NT [21].

However, changes in the architecture of Intel processors cause

the following issues:

Firstly, as L2 cache and LLC are both set-associative, color

bits (the shared bits between a physical address page frame ID

and LLC index, address bits 12-16) also have impact on the

allocation of L2 cache. The specification of the cache hierarchy

in Intel(R) Xeon(R) CPU E5-2620 v2 is shown in Table I. A

subset of color bits can be called L2 color (address bits 12-

14). One L2 color corresponds to 12.5% L2 cache capacity,

and four L3 colors correspond to one L2 color. Improper L3

color allocation leads to the waste of L2 cache, which is

more likely to occur in dynamic color allocation. Meanwhile,

the performance of L2 cache-sensitive programs can be badly

reduced.

The second issue is as follows: in the case of hyper-

threading, two processes running on the same physical core

share L2 resources. Cache contention and conflicts were not

addressed simultaneously at multiple cache levels.

The third issue is that the number of colors is limited. This

limitation is worse when caches are indexed using hashing,

which is common in LLCs of modern processor. For example,

a non-hashed LLC has 128 colors, but a hashed LLC with the

same capacity consisting of four slices can only support 32

TABLE I
INTEL(R) XEON(R) CPU E5-2620 V2 CACHE SPECIFICATION

Cache Level Size Ways Sets Index-bits(address bits)
L1 32 KB 8 64 11-6
L2 256 KB 8 512 14-6

LLC-Slice 2.5 MB 20 2018 16-6
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colors [21].

In order to alleviate the above issues, we propose the

following methods:

To address the first issue of the insufficient utilization of L2

cache caused by page coloring in three-level cache structure,

we use the method proposed by Yuval Yarom [3] to divide a

color into two slice colors based on the slice information. Two

slice colors belong to the same set and occupy the same part

of L2 cache. In this way, when assigning a color to a program,

we can assign two slice colors that are not in the same set,

making the L2 cache available to the program twice as much as

before. At the same time, when assigning colors to a process,

we try to assign colors that do not share L2 cache. Ultimately,

the process allocates L2 cache as much as possible without

changing the proportion of L3 cache. Experiment results show

that IPC is increased by 20.12% in the best case and increased

by 4.74% on average.

To address the second issue, we analyze the situation that

programs with different sensitivities to L2 and L3 running

on different hyper-threading of the same physical core and

propose that L2 and L3 cache should be considered compre-

hensively. Experiment results show that IPC is increased by

6.9% in the best case and increased by 5.5% on average.

To address the third issue, we propose the partial conflict

color (PCC) by using the slice information of each cache

line, which upgrades the original 32 colors to 256 partial

conflict colors. Meanwhile, we sum up the PCC formula and

propose a simple method to extend the formula. Extensive

experiments show that the overall performance of the system

can be improved by using PCC when the number of colors is

insufficient. Experiment results show that IPC is increased by

7.91% in the best case and increased by 3.38% on average.

The rest of this paper is organized as follows: Section II

provides background and Section III introduces the motiva-

tion. Section IV describes the methods and experiments we

proposed to solve the problem of insufficient utilization of L2

cache. Section V discusses the vertical allocation of L2 and

LLC under hyper-threading and the corresponding case study.

Partial conflict color and related experiments are described in

section VI, followed by related work and conclusions.

II. BACKGROUND

A. Memory Hierarchy

With the development of multi-core processor technology,

there is a higher demand for memory subsystems. However,

memory access time is much slower than processor. Therefore,

processor designers have designed cache to bridge the speed

gap between the processor and the memory.

Cache is used to speed up data access. It is often divided into

private cache and shared cache. Each core has its own private

cache (L1 cache), which contains data cache and instruction

cache. In addition, some processors have added a layer of

private cache, L2 cache, such as Intel(R) Xeon(R) CPU E5-

2620 v2 @ 2.10GHz. The shared cache is usually L2 cache

(in two-level cache structure) or L3 cache, also known as Last

L1 Cache

L2 Cache

L3 Cache

Tag Set Index Offset

Tag Set Index Offset

Tag Set Index Offset

Fig. 1. The Structure of Physical Address in three-level Cache Structure

Level Cache (LLC), which is shared between the cores of the

processor.

Cache reads and writes at the granularity of 64 B cache line.

Each cache line is mapped to a cache set. The number of cache

lines that each set can store is called the way. The three-level

cache has different set and way numbers and use different

bits for addressing (Fig. 1). When the processor accesses a

specific address, it first searches for the data corresponding

to its tag in the set according to the set index. If the data is

in the corresponding set, then the access is responded by L1

cache, which we call L1 cache hit. Otherwise, L1 cache miss

occurs. The processor continues to look for data in L2 cache

according to L2 set index and tag. If found, it is L2 cache hit,

otherwise it is L2 cache miss. After L2 cache miss occurs, the

processor continues to repeat the above steps in LLC. If LLC

miss occurs, the processor will continue to look for data in

DRAM.

B. Slice-based Last-Level Cache

Starting with the Sandy Bridge microarchitecture, Intel re-

designed the LLC by dividing the LLC into multiple slices.

Each slice interface with a processor via a coherence engine,

referred to as a C-Box. Each C-Box provides dedicated facility

of MSRs to select uncore performance monitoring events

(Fig. 2 ). The processor uses an undocumented hash function

to determine which slice the address maps to, and L3 index

to determine the set of the address. On this processor, the

number of bits of L3 index decreases, which results in fewer

color numbers available for page color. At the same time, the

undocumented hash function has caused great difficulties in

the research of processor security.

There have been many studies on hash function. Some

researchers probe the memory to find which memory location

maps to each cache set [1]. Ralf Hund [2] rebuilds hash

LLC
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LLC
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Cache  

LLC
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Cache  

LLC
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Fig. 2. Example of Intel Xeon Processor E5-2600 v2
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function on a 4-core machine and proved that set index cannot

determine which slice the address would fall on. Clementine

Maurice [4] uses performance counter to get the access number

of per slice and summarize the hash function of 2, 4, 8 cores

processors. Wei [5] uses HMTT [14] to grab the physical

address trace and analyze the addresses that collide with each

other in the same set to get addresses that are on the same

slice, but this method cannot get the specific slice ID of

the physical address. Yuval Yarom [3] uses the principle that

processors access different slices in different time, obtains the

mapping relationship between address and slice on the 6 core

machine, and reconstructs hash function. When they get the

hash formula, they find that they can divide an old color with

the same set into two new colors without cache conflict, which

is called slice color.

C. Cache Partition

Cache partition usually refers to the partition of shared L2

or L3 cache. These cache partition methods have different op-

timization objectives, including performance [15], [16], [18],

fairness [15], [19], and QoS (Quality of Service) [17], [19].

Page coloring is a widely used method of partition cache. In

most processors, a shared LLC is physically indexed and set

associative. The processor searches for data in cache according

to the physical address, which is divided into a tag, a set

index and an offset. The offset bits are used to determine

the specific offset of data in the cache line. The set index

is used to select the specific set. Tag is used to check whether

the current cache line is hit or miss. The overlapping bits

of page frame number (PFN) and set index are called color

bits. The operating system assigns pages of different colors to

different processes to achieve cache isolation. The formula for

calculating the number of colors is :

number of colors =
cache size

number of ways × page size

However, some recent architectures have introduced cache

slices [7], as described in section II-B, this new structure

page frame number(18 bits) page offset(12 bits)

offsetLLC index

6 bits11 bits

Color bits

LLC tag

13 bits

offsetL2 indexL2 tag

5 bits

L2 Color bits
3 bits

9 bits 6 bits15 bits

Fig. 3. Example of physical address mapping for page coloring, corresponding
to Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz architecture used in this
study.
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Fig. 4. The relationship between color and L2 cache

brings many difficulties and new problems to page coloring,

which we will discuss in detail in the next section.

III. MOTIVATION

A. Page Coloring Leads to Inadequate Utilization of L2 Cache

In the three-level cache structure, L2 and L3 cache are set-

associative. In Fig. 3, L2 Color bits (the shared bits between a

physical address page frame number and L2 index) affect L2

allocation and are a part of the color bits.

The relationship between color and L2 cache is shown in

Fig. 4. When four colors are assigned to a process, the L2

cache that the process use varies greatly. For instance, the

system assigns 4 colors (0, 1, 2, 3) to a process, the process

can use 50% of the L2 cache. However, if the system allocates

colors (0, 8, 16, 24) to the process, the process can only use

12.5% of the L2 cache. An inappropriate color allocation can

degrade the L2 resources available to the program, resulting in

the poor performance of the program. This situation is more

serious for L2-sensitive programs. In order to make the process

use 100% of L2 cache, at least eight colors must be assigned

to the process. Otherwise, L2 cache will be wasted.

Previous experimental environments for page coloring were

two-level cache structures, and none of them considered that

L2 cache occupancy of a process varies greatly, when assign-

ing the same number of colors to the program.

B. Considering the Influence of Page Coloring on L2 and L3
Cache under Hyper-threading

The allocation of page coloring will cause changes in L2

cache occupancy, so when allocating color, not only the num-

ber of colors should be considered according to the process’s

sensitivity to LLC, but also the number of “types” of colors

should be considered according to the process’s sensitivity to

L2 cache. If two processes run on different physical cores, they

will not compete with L2 cache. But if they run on different
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color  0 L2  part  0slice color  1slice color  0

Fig. 5. Association among slice color, color and L2 cache

hyper-threading of the same physical core, they compete for

L2 cache. When two programs with different sensitivity to L2

and L3 are executed concurrently, we need to choose the best

strategy by considering both the cache hierarchy information

and application characteristics.

C. Inadequate Use of Slice Information

There have been many previous studies on CPU with slice

structure, Yuval Yarom [3] proposed that on Xeon E5-2430,

32 page colors could be expanded to 64 slice colors by using

slice information. However, a non-hashed LLC has 128 colors

[20], we need to continue mining slice information to increase

the number of colors and mitigate the impact of the problem

of assigning a small number of colors to multiple programs.

IV. MAKE FULL USE OF L2 CACHE IN PAGE COLOR

A. How to Make Full Use of L2 Cache?

Under the existing schema, unreasonable color allocation

leads to the waste of L2 cache and reduces the performance

of L2-sensitive programs. We propose two ways to alleviate

this problem.

First, colors should be grouped, which means if two colors

correspond to the same part of L2 cache, they should be in

the same group. Our experimental platform consists of 32

colors, which should be divided into eight groups, each with

four colors. In static or dynamic page coloring allocation, OS

should assign colors belonging to different groups to programs.

When the OS recycles part of the color of the program, it

should make the process occupy as much L2 cache as possible

according to the distribution of the color in eight groups. In

this case, each program needs an array to record the number

of colors belonging to eight groups. In this way, colors are

evenly distributed in different groups and L2 cache can be

maximized and evenly utilized.

In addition, we use the method proposed by Yuval Yarom

[3] to divide a color into two slice colors. In Fig. 5, each

color can be divided into two slice colors that do not conflict

on LLC but conflict on L2 cache. When a process needs to

apply for a color, the OS can assign it two slice colors instead.

Consequently, the L2 cache available to the process is doubled

without changing the LLC allocation of the process.

B. Experiment Platform

We implemented a prototype system for a 64-bit Centos

4.7 with kernel version 3.10.93. All the experiments were

conducted using the SPEC CPU2006 benchmark suite on

Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz processor and

64GB of RAM. The L3 cache was shared amongst the 6 cores

(12 hyper-threads) of the processor. The processor has 256KB

8-way set-associative L2 private cache per physical core. As a

result, there were 32 page colors available in the system with
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Fig. 6. Sensitivity of spec programs to L2 cache.

4KB page size. We modified the buddy memory system of

Linux kernel to assign pages of different colors to processes.

C. The Effectiveness of Improving L2 Usage of Programs

In order to control the effect of L3 cache on program

performance, we fixed the number of colors to four to ensure

that the size of LLC used by the process is constant. With four

colors, processes use up to 50% of L2 cache and 12.5% of

L2 cache at least. By using the method described in section

IV-A four colors can be divided into eight slice colors, so that

processes can use up to 100% of L2 cache.

Lin, J [6] divides SPEC programs from high to low into four

categories according to their sensitivity to LLC: red, yellow,

green and black. We select several kinds of programs from

each class to analyze their sensitivity to L2 cache.

We counted the sensitivity of 19 SPEC programs to L2

cache, including 4 red programs, 4 yellow programs, 5 green

programs and 6 black programs. Fig. 6 shows the sensitivity

of 19 programs to L2 cache. IPC is increased by 20.12% in

the best case and increased by 4.74% on average. There are

7 programs in 0% - 1.5%, 3 programs in 3%-5%, 7 programs

in 5%-10% and 2 programs in more than 10%. The most L2-

sensitive procedures are: 3 green programs (over 8%), 3 black

programs (6.3%-7.5%) and 3 yellow programs (about 6%).

By allocating slice colors belonging to different groups, we

can make the best use of L2 cache and reduce the waste of L2

cache due to unreasonable allocation in the process of static

or dynamic allocation of color.

V. RETHINKING THE VERTICAL ALLOCATION OF L2 AND

LLC IN PAGE COLOR

A. Classification of Programs with Different Sensitivity to L2
and L3 Cache

In the case of hyper-threading, multiple processes compete

for L2 and L3 cache simultaneously. It is important to rethink
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Fig. 7. the best L2 cache allocation when the LLC ratio is 14 to 2 for Class
B and Class C.

the vertical allocation of L2 and L3 cache in page coloring.

Depending on whether the program is sensitive or insensitive

to the L2 cache and L3 cache, the programs can be divided

into four categories.

When the sensitivity of one layer of cache is different

between two processes, OS needs to maximize the overall

performance by changing the “type” of color. In this study,

we do not focus on designing a dynamic scheduling algorithm,

mainly for static allocation which explores the impact of the

system performance for different class processes running on

hyper-threading.

B. Case Study of Vertical Allocation of L2 Cache and LLC in
Page Color

In section V-A, we classify programs into four categories.

When two processes are running in different hyper-threading

TABLE II
WHEN COLOR IS ALLOCATED CONTINUOUSLY, THE RATIO OF L2 CACHE

TO L2 CACHE CONFLICT FOR TWO PROCESSES

Class B Class C conflict
15:1 100% 12.5% 12.5%
14:2 100% 25% 25%
13:3 100% 37.5% 37.5%

TABLE III
USING THE METHOD OF SECTION IV-A, THE RATIO OF L2 CACHE TO L2

CACHE CONFLICT FOR TWO PROCESSES

Class B Class C conflict
15:1 50% 25% 0%
14:2 50% 50% 0%
13:3 50% 75% 25%
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Fig. 8. The performance change chart of continuous allocation and optimal
allocation for two programs with different LLC ratios, dotted line is the
optimal allocation.

concurrently, we mainly discuss the following scenario: Class

B (not sensitive to L2 cache, but sensitive to LLC) and Class C

(sensitive to L2 cache, but not sensitive to LLC) run together

The experimental platform is consistent with the description in

section III. In the experiment, the two processes use a total of

16 colors. Baseline is that two processes share 16 colors, which

means they share about 8MB LLC and 256KB L2 cache. We

calculate IPC for class B and C programs at the color ratio

of 15 to 1, 14 to 2 and 13 to 3. Because fewer colors for L3

cache-sensitive programs can make performance lower than

baseline, we will not discuss them.

Under each color ratio, we do two experiments, one is to

allocate continuous colors to the processes, and the other is

to use the method of section IV-A. In the second experiment,

the two programs occupy the same proportion of LLC, while

class B programs occupy as little L2 cache as possible, and

class C programs occupy as much L2 cache as possible. For

example, when the color ratio is 14 to 2, colors are allocated

continuously. Process B allocates color 0 to 14, and process

C allocates color 15. B uses 100% L2 cache and C uses 25%

L2 cache. The L2 cache used by C is part of the L2 cache

used by B. We use the method of section IV-A to change the

L2 cache proportion of two programs without changing their

L3 cache proportion, as shown in Fig. 7. In this case, the LLC

usage size of the two processes remains unchanged, but each

accounts for half of the L2 cache.

When the LLC ratio is 15 to 1, 14 to 2 and 13 to 3, the L2

cache occupancy ratio and conflict ratio of the two programs

in continuous allocation of color and optimal allocation are

shown in Table II and Table III

According to the conclusion in section IV-A we use class

B programs: 471. omnetpp, 473. astar, 482. sphinx3. Class C

programs are 434. zeusmp, 450. Soplex. Fig. 8 shows that if

the allocation of L2 and L3 cache is considered comprehen-

sively, the performance of class B programs (insensitive to L2

cache and sensitive to L3 cache) is not affected much, but

the performance of class C programs (insensitive to L2 cache

and insensitive to L3 cache) is improved a lot. As a result,
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the overall performance has been improved, with a maximum

increase of 6.9% and the average increase of 5.5%.

Experiments show that when doing page coloring, L2 and

L3 cache allocation need to be considered concurrently. In

multi-core processors with hyper-threading, if programs with

different sensitivity to L2 and L3 cache are placed in hyper-

threading of the same physical core, the cache resources can

be fully utilized and the overall performance can be greatly

improved by allocating slice color reasonably.

VI. MAKE FULL USE OF SLICE INFORMATION IN PAGE

COLOR

A. Partial Conflict Color

Pages of different colors are distinguished by set index.

Yuval Yarom [3] prove that in the case of knowing the slice

id of each cache line, it can be found that there is no cache

conflict between the two pages of the same set. This allows

using different colors for pages that share the same cache-

set index address bits, increasing the number of supported

colors. In other words, a color can be divided into two non-

conflicting slice colors. However, the slice information is not

fully utilized. By making full use of the slice information,

we can divide 1 color into 8 partial conflict colors. At the

same time, we sum up the PCC formula and propose a simple

method to extended the formula.

Our experimental environment is the same as described in

section IV-A. Cache-set index bits limits page coloring to only

32 different colors. First, we use the performance counter to

get the slice information of 4 ∼ 5G physical memory and

define the collision rate of two pages, that is, the number of

cache lines with the same offset of two pages falling on the

same slice divided by the number of cache lines contained in

the page. For instance, in Fig. 9, page A and B have 64 cache

line size blocks and the number of blocks with the same offset

and slice ID is 6. Therefore, the collision rates of page A and

B is 6/64 = 9.375%.

We divided pages with a collision rate of less than 65%

into one group, and eventually, pages with the same set index

were divided into eight groups, called partial conflict color

(PCC). The collision distribution between partial conflict color

is shown in Fig. 10. The black part represents the L3 cache

occupied by PCC. Each lattice accounts for one-sixth of the

L3 cache occupied by a slice color. Two PCCs occupy the

0 1 2 3 4 5 0 1 2 3 4 0 4 3 2 1 0 5 4 3 2 1......

5 4 3 2 1 0 0 1 2 3 4 0 ......page B

page A

4 3 2 1 0 5 4 3 2 1

Fig. 9. Slice ID for each cache line size block of pages A and B.

PCC 2 1 1 1 PCC 2 1 1 1
PCC 3 1 1 1 PCC 3 1 1 1
PCC 4 1 1 1 PCC 4 1 1 1
PCC 5 1 1 1 1 PCC 5 1 1 1 1

Slice
color 1

Slice
color 0

Fig. 10. The relationship between partial conflict color (PPC) and slice color.

29 28 27 26 25 24 23 22 21 20 19 18 17
O0
O1
O2

Fig. 11. Formula for calculating partial conflict color in 4 ∼ 5G of memory.
Shaded boxes show address bits that are XORed to compute each output bit.

TABLE IV
THE CORRESPONDING RELATIONS OF PARTIAL COLLISION COLORS IN

DIFFERENT MEMORY AREAS

4-5G partial conflict color 0 1 2 3 4 5 6 7
5-6G partial conflict color 2 3 0 1 6 7 4 5

same column lattice, which means that they will have L3 cache

replacement.

It can be found that pages with partial conflict colors 0, 1, 6,

7 and pages with partial conflict colors 2, 3, 4, 5 do not replace

each other in LLC. These two groups of partial conflict colors

are called slice colors. The collision rate of two partial conflict

colors belonging to the same slice color may be 0, 1/3 or 2/3.

Experiments show that this conclusion applies to all sets. At

the same time, we summarize the formulas for obtaining these

colors. Calculate the physical address offset relative to 4G, a

total of 30 bits, address [0:29]. Offset (6 bits) and LLC index

(11 bits) are not involved in the calculation, so low 17 bits are

not used as input. We take the high 13 bits, address [17:29]

as the input. The specific formula is shown in Fig. 11.

B. A Fast Method to Extended the Formula of Partial Conflict
Color

It is not enough to know the formula of partial collision

color of 4 ∼ 5G physical address space. We must extend

the formula to more digits. Although we can obtain slice

information of larger address space by previous methods to

derive partial conflict color formula of 1TB memory space, it

takes at least 1024 times as long as obtaining 1GB memory

formula. Therefore, a fast method for expanding partial conflict

colors need to be found.

According to the existing formulas, we judge that when the

number of address bits increases, the new number of address

digits will increase to the new formula in the XOR way.

We apply the formulas derived from 4 ∼ 5 G memory to

5 ∼ 6 G, dividing pages of same set into eight new partial

conflict colors. We use performance counter to record the

number of slices accessed by a new partial collision color. The

relationship between old and new conflict colors is shown in

34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
O0
O1
O2

Fig. 12. Formula for calculating partial conflict color in 4 ∼ 36G of memory.
Shaded boxes show address bits that are XORed to compute each output bit.
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Fig. 13. Performance of cache-sensitive programs and cache-insensitive programs under different cache partitioning strategies.

Table IV. Therefore, the new bit address [30] only participates

in the calculation of output [1].

By repeating the above steps, we expand the input to 17

bits and get the formula of partial color from 4 ∼ 36 G of

physical memory. The result is shown in Fig. 12.

In this way, the formula address number can be increased

by one bit each time only by measuring the slice number of

pages with performance counter. It reduces the time spent on

acquiring slice information of the entire address space and the

time spent on analysis.

C. The Effectiveness of Partial Conflict Color

In complex systems, many threads or processes allocate

color, and the number of remaining colors is insufficient. We

discuss the case where only 2 colors are left and 2 programs

need to be allocated.

When processes are sensitive or insensitive to LLC, colors

can be divided into two programs in a ratio of 1 to 1, which

is the baseline. We mainly discuss the following situations:

program A is sensitive to LLC , program B is insensitive to

LLC.

We compare evaluation results of four configurations (Table

V):

TABLE V
LLC PROPORTION AND CONFLICT PROPORTION OF FOUR DIFFERENT

CACHE PARTITION METHODS

Type A B Cache Conflict
case 1 75% 25% 0%

case 2 (PCC) 100% 25% 25%
case 3 (PCC) 91.6% 13.6% 8.33%
case 4 (PCC) 100% 12.5% 12.5%

1) Case 1 (cache partition using slice color). In previous

sections, we know that a color can be divided into two non-

conflicting slice colors. Therefore, we assign three slice colors

to the cache-sensitive program and one slice color to the cache-

insensitive program. Cache-sensitive programs occupy 75% of

the cache, and cache-insensitive programs occupy 25% of the

cache. There is no cache replacement between them.

2) Case 2 (cache partition using partial conflict color). Each

color can be divided into eight partial conflict color (PCC).

The cache-insensitive program takes up two PPCs, PCC0 and

PCC6. The cache-sensitive program takes up one full color

and the remaining six PPCs. The cache occupancy ratio and

conflict ratio of the two programs are shown in Table V.

3) Case 3 (cache partition using partial conflict color). The

ache insensitive program takes up two PPCs, PCC0 and PCC7.

The cache-sensitive program takes up one full color and the

remaining six PPCs. The cache occupancy ratio and conflict

ratio of the two programs are shown in Table V.

4) Case 4 (cache partition using partial conflict color).

The cache-insensitive program takes up one PPC, PCC0.

The cache-sensitive program takes up one full color and the

remaining seven PPCs. The cache occupancy ratio and conflict

ratio of the two programs are shown in Table V.

We count the IPC of the two programs in a fixed period of

time. Fixed time period is 4 minutes. And we find that making

the fixed period longer does not change the final conclusion.

We divide the IPC of other cases by the IPC of the baseline

and compare the partial conflict with the partition.

Fig. 13 show that using PCC is effective when the L3 cache

sensitive program A and the L3 cache insensitive program

B are co-running, so that the overall IPC of the system is

improved. By discovering a balance point that allows cache-
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sensitive programs to take up more cache and less conflict

with the two program caches, the IPC of the cache-sensitive

program is improved and the IPC of the cache-insensitive

program does not decrease too much. In the best case, 401

and 462 run together, the system IPC is increased by 3.5%.

System IPC is increased by 1.71% on average. In the case

of 471 and 434 running together, the IPC of cache-sensitive

program is increased by 6.7% in the best case, and the IPC of

cache-sensitive program is increased by 2.77% on average.

VII. RELATED WORK

Most experimental platform for page coloring research is

a two-level cache structure and L2 cache is a shared LLC.

They did not consider the impact of page coloring on L2

cache in a three-level cache structure. At the same time, the

allocation strategy of page coloring under hyper-threading is

not considered. Although some studies have used a three-level

cache processor, they have not explored the impact of page

coloring on L2 cache.

Lin, J [6] transferred page coloring from the simulator to

the real system. He experimented on Dell PowerEdge 1950

machine with a shared L2 cache. Livio Soares [8] used page

coloring to store unused pages in pages with specified colors

to improve performance with a shared L2 cache. Ye, Y. [9]

presented a memory management framework called COLORIS

on a quad-core Intel Xeon E5506 2.13GHz processor and 8GB

of RAM. The L3 cache was shared amongst the 4 cores of the

processor. Wang, X [10] combined page coloring with way

partitioning to make cache partitioning more fine-grained to

improve system performance and experimented on ThunderX

CN8800 [11]. With a shared, 16 MB L2 cache. Nosayba El-

Sayed [12] experimented on Xeon D-1540 cores (Broadwell)

with 256KB private per-core, 8-way set-associative L2 cache

and 12 MB, shared, 12-way set-associative L3 cache, but the

proposed method is based on way partition, using Intel’s CAT

technology. Alireza Farshin [13] used slice structure to move

data closer to the core to improve performance. Although slice

structure is used, it is not applied to page color.

VIII. CONCLUSION

We explored the issue that page coloring can lead to L2

cache waste on CPUs with slice structure. By allocating colors

belonging to different groups and using slice color, programs

can make full use of L2 cache to improve performance. At

the same time, we rethink the vertical allocation of L2 and L3

cache in page color. By allocating more L2 cache to L2 cache-

sensitive programs and more L3 cache to L3 cache-sensitive

programs concurrently, the system performance is improved,

and some allocation strategies are proposed. Finally, we make

full use of slice information and propose partial conflict color.

Experiments show that partial conflict color can make system

performance better when the colors are insufficient.
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