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Abstract—Currently many researches focus on new methods
of accelerating memory accesses between memory controller and
memory modules. However, the absence of an accelerator for
memory accesses between CPU and memory controller wastes the
performance benefits of new methods. Therefore, we propose a
coordinated batch method to support high concurrency of mem-
ory accesses (HCMA). Compared to the conventional method
of holding outstanding memory access requests in miss status
handling registers (MSHRs), HCMA method takes advantage
of scratchpad memory in FPGAs or SoCs to circumvent the
limitation of MSHR entries. The concurrency of requests is only
limited by the capacity of scratchpad memory. Moreover, to avoid
the higher latency when searching more entries, we design an
efficient coordinating mechanism based on circular queues.

We evaluate the performance of HCMA method on an MP-
SoC FPGA platform. Compared to conventional methods based
on MSHRs, HCMA method supports ten times of concurrent
memory accesses (from 10 to 128 entries on our evaluation plat-
form). HCMA method achieves up to 2.72× memory bandwidth
utilization for applications that access memory with massive fine-
grained random requests, and to 3.46× memory bandwidth uti-
lization for stream-based memory accesses. For real applications
like CG, our method improves speedup performance by 29.87%.

Index Terms—memory request accelerator, coordinated batch
method, circular queue, FPGA

I. INTRODUCTION

Nowadays the conventional memory controller uses stan-
dard DDRx SDRAM based bus interface. To overcome the
limitations of fixed delay and granularity, researchers focus
on asynchronous and parallel memory bus based on batch
processing. Typically intermediate logic, such as an interface
buffer/die, is introduced to bridge processor and memory. This
new architecture includes FBDIMM [1], BOB [2], and HMC
[3]. Other solutions like Gen-Z [4] and MIMS [5] attempt to
create a new bus protocol.

However, the design of new architecture merely solves part
of the problem in transferring requests for highly concurrent
memory accesses. Current cache hierarchies have limited miss
status handling registers (MSHRs) to support request paral-
lelism between CPU and memory controller. Even in designs
for high-end commercial processors, the norm supports only
a very modest number of outstanding misses at a time [6].
For embedded processors and MPSoC FPGAs, the MSHR
limitation issues are more severe [7] [8] since the MSHR
numbers are relatively small (10 in Xilinx Zynq-7000 all
programmable SoC) but the memory access requirements are
normally more critical (benefits from new architectures). Due
to the limited physical resources available on chip, increasing
the number of MSHRs can be challenging.

We present a general method to achieve high concurrency
of memory accesses (HCMA) between CPU and memory
controller practically. Without modifying the CPU cores, we
propose a coordinated batch method based on scratchpad
memory to replace the conventional method using MSHRs.
Moreover, we design an efficient coordinating mechanism
based on circular queues to manage the states of all records.
Furthermore, to take advantage of the performance benefits
of new architectures, the design supports basic packing and
unpacking process [9], and some extended memory access
instructions, such as scatter/gather [10].

We implemented HCMA on Xilinx Zynq series MPSoC
FPGA platform. Experiment results show that compared with
conventional memory accesses, HCMA module with extended
memory access instructions presents significant performance
improvements when running applications with different mem-
ory access features. Random access [11] test obtains 2.72×
memory bandwidth utilization, while the result of stream
access [12] test is 3.46× memory bandwidth utilization. For
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real applications like CG [13], the performance is increased
by 29.87%.

The key contributions of our study are as follows:
1) We propose a general SPM-based coordinating method

to manipulate highly concurrent memory requests in batch
without altering CPU cores and the NoC protocol: HCMA
method communicates with CPU cores via scratchpad memory
(SPM). Memory requests are sent to SPM by software. Then
HCMA related modules fetch the requests from SPM. As
for conventional methods, the amount of outstanding memory
accesses is limited by the number of MSHRs. HCMA method
holds requests with SPM, which eliminates the concurrency
restrictions incurred by MSHRs. The amount of storage entries
can easily exceed ten times the number of MSHR entries.

2) We propose extended memory access instructions that
take advantage of the new architecture for concurrent memory
accesses between memory controller and memory modules:
By utilizing SPM, HCMA method defines extended memory
access instructions without modifications of CPU cores. As
an example, we designed scatter/gather instruction for higher
memory bandwidth, since it removes the limitation of fixed
data granularity.

3) We implemented a practical HCMA module on an MP-
SoC FPGA platform integrated with SPM and evaluated the
performance improvements: We implemented HCMA module
with programming logic on FPGA platform to improve the
concurrency of memory requests. Experiment results showed
that the design provides better performance in memory band-
width than conventional methods.

This paper is organized as follows: Section II presents
background information of our study. In Section III, we
provide general coordinated batch method based on SPM.
Section IV details the implementation of HCMA method on
FPGA platform and lists the amount of resources consumed by
HCMA module. In Section V, we introduce the parameters set
for experiments, the features of application programs, and then
analyze the results of performance tests. Section VI discusses
the scalability of HCMA method. Section VII summarizes the
paper.

II. BACKGROUND

The conventional memory architecture adds multi-level
caches between CPU and memory, as shown in Figure 1(a).
This architecture masks the memory access delay by increas-
ing cache hit rates, while relieves the memory wall problem
by improving off-chip memory bandwidth. However, it lacks
efficiency and scalability in the new scenario that applications
send high concurrency requests. First, when using the standard
DDRx memory interface, the processor and the memory are
tight coupling. Therefore, the delay of data access is fixed,
which increases the difficulty of sending highly concurrent
requests. Second, the mismatch between the fixed granularity
of data transmission and the variable data sizes of different
applications causes the waste of memory bandwidth.

The improved methods based on this architecture mainly
focus on the following research aspects. The most effective
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Fig. 1. The architecture design of memory access

way to increase cache hit rates is to achieve good temporal and
spatial locality [14] [15], which is becoming more and more
difficult to reach with multicore processors and data-intensive
applications nowadays [16] [17]. At the same time, the most
natural and classical way to increase memory bandwidth is to
increase the memory clock frequency [18] [19] or the memory
bus width [20] [21]. However, both parameters are close to the
physical limits of traditional memory like DRAM [22].

Therefore, the study of new architecture with asynchronous
interface, variable granularity, and variable delay has become a
trend, including BOB [2], HMC [3], Centaur [23], and Gen-Z
[4]. The new architecture transfers packages in asynchronous
request and response modes, therefore a single transfer pos-
sibly supports multiple concurrent and out-of-order requests.
The new architecture is shown in Figure 1(b). The basic idea
of new architecture is to add buffer chip to the system for
building an extended memory controller, and then make use of
new high-speed bus interface to connect extended memory. An
example of new architecture is MIMS [5], which is a specific
design of BOB [2]. A message channel in MIMS replaces the
conventional synchronous memory bus. The message channel
works in request and response modes, which transfer mes-
sage packages with asynchronous memory accesses. More-
over, MIMS supports sending multiple concurrent and out-of-
order requests within a single message packet. Therefore, the
memory bandwidth can be well utilized. In addition, memory
modules are organized and managed by their own buffer and
scheduler instead of the processor. MIMS further improves
memory access performance with cooperation between the
processor and the memory system.

Current researches mainly focus on the interface between
memory controller and memory modules. The optimization
goal is to improve bus parallelism. The requests transfer
between CPU cores and memory controller still uses con-
ventional methods, as shown in Figure 1(b). If cache hits,
CPU accesses cache according to the memory address trans-
lation information. If cache misses, MSHRs record outstanding
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requests. Unfortunately, in current architecture, the number
of MSHRs is quite limited especially in embedded SoC(10
outstanding read requests on ZC706 board [24]). When an
application with poor locality runs, MSHRs will be filled full
quickly and become the bottleneck of highly concurrent appli-
cations even with new architecture. The problem above cannot
be solved by simply extending the number of MSHRs [6].
Considering the mismatch between request granularity(4KB,
2MB, etc.) and memory access granularity(32B, 64B, etc.),
one request is probably recorded in multiple MSHR entries.
In addition, it is difficult to add sufficient amounts of MSHRs
limited by on-chip resources.

To break the limit of concurrency, we design a request batch
processing method based on scratchpad memory. The structure
is shown in Figure 1(c). The scratchpad memory is addressable
by CPU. CPU writes memory access requests in batch to
different addresses in SPM. HCMA module reads memory
access requests in batch from SPM and executes the requests.
If the requests are memory read requests, after the data is
returned from memory, HCMA module puts data into SPM and
informs CPU to read data. If the requests are memory write
requests, there is no need to return data. Therefore, HCMA
module only needs to execute the requests.

Our approach replaces cache layers and MSHRs with SPM.
In principle, the absence of cache will introduce delay in
accessing data. However, in the case of highly concurrent
memory requests, MSHRs will fill full quickly and then lock
up the cache, causing a long delay. On the contrary, the SPM-
based method stores more unfinished requests and multiple
requests execute concurrently. In high concurrency scenarios,
the performance of SPM-based method for batch processing
is not affected, although the delay of a single request will be
longer than traditional method.

HCMA method is practical since there is no need to alter
CPU cores and the NoC protocol. The only precondition is
that the on-chip system is integrated with scratchpad memory,
which can be accessed by both CPU and FPGA logic. Then
the method can be generally used for both FPGA memory
expansion and dedicated SoC design.

III. DESIGN OF HCMA

As shown in Figure 1(c), the read and write requests are
transferred through SPM from CPU to HCMA module, while
the transmission of data is also accomplished via SPM. There-
fore, the first problem in our design is the communication
between CPU and HCMA module. We need to design a
method to complete read and write requests with a reasonable
process flow. Since the design significantly increases storage
entries to circumvent the limitation of MSHR entries, the
management problem of multiple entries must be addressed.
Moreover, in order to make full use of extended memory
controller, the HCMA method needs to add extended instruc-
tions. The following section will describe the three aspects
of HCMA method, including SPM-based request processing
flow, management mechanism with circular queue and design
of extended memory access instructions.
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Fig. 2. The SPM-based batch processing for read requests

A. SPM-based Request Processing

We use SPM as the reserved space to transfer requests
between CPU and HCMA module.

1) Read Request Management:
As shown in Figure 2(a), SPM stores one read table. A read

table can store a lot of entries. Each entry corresponds to an
ID number and stores a single read request. Each read request
occupies a fixed-length address space with three fields: TYPE,
ADDR and DATA, which are used to store the type, address
and data of the read request separately.

In Figure 2(b), each entry in the table changes in four states:
Free, NewRequest, Wait, ReadDone. In ‘Free’ mode, there is
no read request. When a read request is sent by CPU cores, the
state of corresponding entry changes to ‘NewRequest’, which
represents new read request is received. In ‘NewRequest’
mode, HCMA fetches read requests from SPM and sends the
requests to extended memory. Then the state transforms from
‘NewRequest’ to ‘Wait’. After a read request is completed,
which means HCMA has received the requested data and the
data has been filled into the ‘DATA’ field, the state changes
to ‘ReadDone’. After CPU cores obtain the required data, the
state of corresponding entry changes to ‘Free’. Then the entry
is ready for another read request processing.

To manage the states of multiple entries (the number is N in
Figure 2(a)) in the table, we developed a management method
based on circular queues, which provides rapid detection of
the state in the table.

We provide three circular queues for different states of
table. They are named as ‘Free Queue’, ‘NewRequest Queue’,
‘ReadDone Queue’. As shown in Figure 2(c), all the queues
are used to store the ID value of entries which match the
corresponding state. Since the match between returned data
and request is judged by the ID value, the three queues can
be managed out of order, which means the method supports
out-of-order execution. Each queue has both take pointer and
fill pointer, which indicate head position and tail position
respectively. The take and fill pointers drawn above the queues
are used by CPU and the take and fill pointers drawn below the
queues are used by HCMA. All pointers are implemented by
FPGA registers, so that HCMA module can detect changes
rapidly. CPU updates pointers by accessing corresponding
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memory-mapped space. CPU uses methods like polling to
detect the updates of registers. Therefore, the communication
of registers is not related to SPM, as shown in Figure1(c). The
queues are implemented by arrays. In principle, it is reasonable
to take the total number of entries as the length of each array,
since in the extreme situation all the entries are in the same
state, then one of the three queues are filled full with ID
numbers. However, to avoid the comparison of take and fill
pointers when adding IDs to the queue, we design the length
of each array to be the total number of entries plus one, i.e.
the length of each queue is N+1 in Figure 2(c), then we ensure
all the queues will never be full.

The batch processing flow for read requests makes use of
the three circular queues. The read flow is divided into the
following four steps, as shown in Figure 2(c) and Figure 2(d):

• First, the software check whether the ‘Free Queue’ in
Figure 2(c) is empty (a queue is empty when the take
pointer equals to the fill pointer). If not, take some IDs
from the location pointed by the take pointer and fill them
to the location pointed by the fill pointer of ‘NewRequest
Queue’. At the same time, the table entries related to
the IDs are filled with new read requests, Figure 2(d)
takes one entry(ID equals to X) as an example, two fields
(TYPE, ADDR) are filled.

• HCMA reads the IDs from the take pointer of the
‘NewRequest Queue’ in Figure 2(c), then takes the read
requests according to the ID values and sends them to
extended memory. Figure 2(d) takes one entry as an
example, HCMA sends the contents of two fields (TYPE,
ADDR).

• After the read request data returns, HCMA fills in the
‘DATA’ field of the corresponding read table entry as
shown in Figure 2(d), meanwhile it places the ID in the
position indicated by the fill pointer in the ‘ReadDone
Queue’ in Figure 2(c).

• The software takes the IDs from the take pointer in the
‘ReadDone Queue’, and then fetches the data from the
table to the CPU according to the IDs, and finally puts
the IDs into the ‘Free Queue’.

With the SPM-based batch processing method, the numbers
of table entry is only limited by the capacity of on-chip
memory. The concurrency exceeds the traditional method
obviously.

2) Write Request Management:
The circular queue used to transfer write requests is shown

in Figure 3. There is no need for write requests to return data
like read requests, therefore the write flow is simplified as
follows:

• When to send new write requests, the software checks
whether the write queue is full. If the queue is not full,
the software fill the corresponding location pointed by
the fill pointer with new write requests.

• HCMA takes the write requests from the location corre-
lated to the take pointer of the write queue, and sends
them to extended memory.

write queue addr datatype

fill

take

addr datatype …

 

Fig. 3. The SPM-based batch processing for write requests

The difference between read and write request processing
is that the write queue is possible to be full. Therefore, the
first step is to check if the queue is full when sending new
requests.

B. Extended Memory Access Instructions

As shown in Figure 2(d) and Figure 3, there exists a ‘TYPE’
field for both read and write requests. This feature is used for
the design of extended memory access instructions. Moreover,
the ‘TYPE’ field can carry some upper-level information, such
as thread number and priority. These parameters are used to
achieve advanced QoS scheduling in extended memory.

1) Variable Granularity:
The granularity information is encoded in the ‘TYPE’ field,

which is not limited by the instruction set and cache line size.
Therefore, 8B to 4KB memory access granularity can be sent
by software. The software control the granularity of memory
accesses directly, therefore the memory optimization can use
some advanced memory access strategies at the software level.
In addition, the DRAM accesses are all needed by software,
achieving effective memory bandwidth.

2) Scatter/Gather:
Scatter/gather is a method to implement DMA data transfer

[25]. It uses a link list to describe physical discontinuous
addresses of memory access. CPU transfers the first address of
link list to DMA, and then DMA master transmits a continuous
block. After all the data from discontinuous addresses is
delivered, the method generates an interrupt. Scatter/gather
is considered as an efficient DMA approach. In the design,
the user-defined feature of ‘TYPE’ field in SPM offers the
possibility to design extended memory access instructions,
such as scatter/gather. Scatter/gather data transfer is as follows:
First, the method reserves storage space for scatter/gather
transmission in SPM. When the ‘TYPE’ field is set to be a
scatter/gather instruction, the software writes multiple requests
to the storage space. The HCMA module detects the changes
of related status register, and then fetches a request from
SPM. If the ‘TYPE’ field of the request matches scatter/gather
instruction, HCMA module obtains all other requests of the
extended instruction, while processing the requests in batch.
After all the requests are finished, HCMA module updates the
value of related status register. The advantage of this design
is that it reduces the number of accesses to SPM by CPU and
HCMA module, further improving the performance of request
transfer.

IV. IMPLEMENTATION OF HCMA

The verification platform needs to meet the following re-
quirements:
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Fig. 4. The system interconnect architecture with HCMA

• To achieve request processing with HCMA, the FPGA
platform requires CPU cores, scratchpad memory, and an
interface between FPGA logic and SPM. MPSoC FPGA
(XC7Z045) belongs to the Zynq-7000 all programmable
SoCs, referred to as Zynq in Figure 4. It integrates
an ARM-based processor system with FPGA [24]. The
architecture can customize both logic and software.

• To realize asynchronous memory access with extended
memory, it is necessary to simulate asynchronous new
architecture. Another Kintex chip(XC7K410T) is used to
analog the receiver of new architecture, and connected to
Zynq through GTX (Giga bit TX) high speed interface.

• To compare with conventional methods, we reserved the
interface between Zynq and DDR3 SDRAM as a baseline.

In the following part, we will describe the features of
the MPSoC FPGA platform. Then we will detail the im-
plementations of HCMA, including the system interconnect
architecture, the processing flow of memory access requests,
and the circular queue management mechanism to replace
polling method.

A. System Interconnect Architecture

PS is the abbreviation of processing system. As shown
in Figure 4, PS contains a 256KB scratchpad memory, also
known as OCM. It uses SRAM circuit. Therefore, the speed of
OCM access is much faster than DRAM main memory access.
OCM occupies specific physical address space. CPU sends
read and write requests via the snoop control unit. Meanwhile,
HCMA module accesses OCM via the OCM interconnect unit
as a master.

HCMA is implemented in PL, which means the program-
ming logic. The interconnect bus between PS and PL is com-
posed by three kinds of AXI (advanced extensible interface)
bus. Accelerator-Coherency Port, referred to as AXI ACP,
transfers requests that ensuring cache consistency. General-
Purpose Port, referred to as AXI GP, is suitable to connect
I/O devices. High-Performance Port, referred to as AXI HP,
supports data transfer with a large size. In the design, we
use AXI GP to transfer memory access requests from CPU
to HCMA module, while the AXI HP transfers data between
HCMA module and OCM.

The extended memory controller adds semantic information
to memory access requests, encapsulates multiple requests into
a packet, and then transfers packets to the extended memory.
The extended memory consists of buffer chip and memory. We
use high-speed Xilinx GTX transceiver to accomplish the data
transfer between extended memory controller and the extended
memory.

Moreover, we reserved the conventional interface between
Zynq and DDR3 SDRAM as the baseline of the experiment,
as shown in Figure 4. The baseline memory access is sent to
DRAM memory (1GB) via L1 and L2 cache.

B. HCMA Internal Modules

There are two submodules in HCMA, namely read for-
warder and write forwarder. The outputs of read forwarder and
write forwarder are passed to request queues that implemented
by FIFOs. In addition, the internal response queue that holds
the IDs of finished read requests is also implemented by FIFO.
HCMA also contains two sets of registers. One is named the
group of base address registers, while the other is the group
of pointer registers. In Zynq, CPU can access the registers in
HCMA via AXI GP.

Base address registers are written by CPU at the beginning
of the program. Then they will be used by HCMA when the
program is running. The values of them remain the same
during program execution. The registers include the base
address of table, new read queue, finished read queue and write
queue. The base address of table is used by read forwarder in
HCMA to calculate the OCM address of current read request.
OCM address equals to the sum of table base address and
ID value. When pointers reach the end of arrays, they use the
base address of new read queue, finished read queue and write
queue to return to the beginning of the arrays. This circular
feature of HCMA method ensures the communication with
shared scratchpad memory.

Pointer registers are divided into two parts. One is fre-
quently updated by CPU when program is running, while
the other is updated by HCMA. The former includes the fill
pointer registers of new read queue and write queue. HCMA
submodules check these registers for the number of elements
in queues and determine whether to fetch requests from OCM
according to the values of the registers. The later includes the
fill pointer register of finished read queue and the take pointer
register of write queue. CPU uses the fill pointer to determine
which read request has been completed, and checks the take
pointer to estimate if write queue is full. The design of pointers
supports out-of-order and parallel execution of requests.

Table I lists the amount of resources consumed by the
different components of HCMA module. RAMB36E1 and
RAMB18E1 represent 36Kb and 18Kb of Block RAM, respec-
tively. We make use of multiple FIFOs in PL, which occupy
some block RAM resources. Meanwhile, when calculating the
access address of the table and the queues, multiplication is
used, so the design occupies four DSPs, i.e. DSP48E1 in the
table.
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TABLE I
RESOURCE UTILIZATION

category quantity Total Proportion
Register 8697 437200 1.99%

LUT 5792 218600 2.65%
Slice 2831 54650 5.18%

RAMB36E1 76 545 13.94%
RAMB18E1 3 1090 0.28%

DSP48E1 4 900 0.44%
BUFG 3 32 9.38%

C. CPU-FPGA Communication

After configuring the programming logic, the complete
process for HCMA to transfer read and write requests in batch
is shown in Figure 5. The read request flow is as follows:

• First, read forwarder of HCMA module uses AR channel
of AXI HP0 to send read command to OCM, the address
is corresponding to the take pointer of ‘NewRequest
queue’. OCM then executes this read command, returning
read requests in the queue to read forwarder via R channel
of AXI HP0.

• Second, read forwarder analyzes the read request, and it
sends a read command to the extended memory controller
and record ID of the read request. The address is in
the ‘addr’ field of the read request. Extended memory
controller will execute this read command, after the
execution, the data will be returned.

• The read forwarder then transfers data to the table in
OCM through AW and W channels of AXI HP0. The
address of the AW channel is determined by the ID
returned.

• When data transfer completes, OCM sends a ‘write
response’ to read forwarder through B channel of AX-
I HP1. The forwarder places the ID of B channel into
the ID FIFO of the forwarder.

• When the number of data in the ID FIFO reaches a certain
amount, the forwarder writes the IDs to the finished
read queue of OCM through AW and W channels of
AXI HP1. The address of AW channel is the fill pointer
of the finished read queue. When the transfer completes,
OCM sends a ‘write response’ to read forwarder through
B channel of AXI HP1.

Figure 5(b) shows the write request flow. First, write for-
warder sends read commands to OCM through AR channel
of AXI HP2, and then OCM executes this read command,
returning the data in write queue to the forwarder through the
R channel of AXI HP2.

Then write forwarder analyzes the data, it sends a write
command to the extended memory controller. The address is
from the ‘addr’ field in the write request, and the data is from
the ‘data’ field in the write request. After the execution, the
write forwarder will send a ‘write response’ to OCM through
the B channel of AXI HP2.
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Fig. 5. The process flow of read submodule and write submodule in HCMA

D. Software Modification

Zynq-based software development is performed in the Xil-
inx Software Development Kit (referred to as XSDK). XSDK
has an ARM gcc cross compiler that compiles software code
into an executable file. An SSH connection can be established
in the XSDK environment to log in to the Zynq Linux system.
When running the software, XSDK will automatically copy the
executable file to the Linux file system for execution.

We propose HCMA without altering CPU cores and the
NoC protocol. To implement HCMA using SPM, the software
codes are modified as follows.

First, software codes use Linux system call mmap() to
complete the conversion of virtual and physical addresses.
Because the addresses stored in the table and write queue are
physical addresses, while the software uses virtual addresses.

Second, the codes define new data structures for HCMA,
the sizes and address offsets of all data structures in the
OCM. The data structures include ‘read table’, ‘Free Queue’,
‘NewRequest Queue’, ‘ReadDone Queue’ and ‘write queue’.
The codes also writes all IDs into the ‘Free Queue’.

Then, according to the read and write flow described in
Section III, we write algorithms that implements HCMA read
and write requests. It is worth mentioning that the algorithms
are all about read and write OCM space and update registers.
When applications need to send high concurrent read or
write requests, they call our customized HCMA READ or
HCMA WRITE function.

Finally the modified codes can be compiled to an executable
file to test.

V. EVALUATIONS

A. Methodology

Our verification platform supports two kinds of memory
accesses. The first kind is to transfer requests to standard
DDR3 memory via DDR3 memory bus, as shown in Figure
4. Requests access DDR3 SDRAM when L2 cache miss
occurs. This kind is presented as the baseline of the evaluation.
The other kind is to transfer requests to extended memory
controller in programming logic. Then extended memory con-
troller communicates with extended memory to fetch data. We
evaluate the performance of both kinds.
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TABLE II
BASELINE, OCM, HCMA RUNNING CONDITIONS

Baseline OCM HCMA
data width (bits) 32 64 64
frequency (MHz) 533 222 100

physical limited peak
bandwidth (GB/s) 1.066 1.776 0.8

The operating parameters for baseline memory, OCM, and
extended memory are shown in Table II. As listed in Table
II, both data width and the physical limited peak bandwidth
are different for the three kinds of memory. To ensure the
fairness of evaluation, it is better to take bandwidth utilization
as the indicator. The bandwidth utilization equals to the results
of dividing practical memory bandwidth by physical limited
peak bandwidth.

B. Performance

1) Random Access:
Random access is a program used by HPC Challenge

Benchmark to evaluate memory random access performance.
It measures how many times the CPU cores can update the
randomly generated memory address per second. Random
access attempts to issue as many random update operations
as possible to memory system, in order to get the peak
performance. Therefore, it is a typical program with highly
concurrent requests. Theoretically the high concurrency mode
will achieve better performance.

The test results of random access are measured with GUPS
(Giga UPdates per Second). The granularity for each access
is 8 bytes. An update means a read access and a write
access. Therefore, the memory bandwidth is 16 times the value
of GUPS. Figure 6 shows the memory bandwidth in four
conditions: baseline, HCMA module, the on-chip memory,
HCMA module with extended instructions. It can be seen from
Figure 6 that the results of HCMA method are better than
baseline.

The memory bandwidth utilization is the ratio of bandwidth
in test and bandwidth in physical limited peak bandwidth. The
value of baseline is only 7.6% (0.0811/1.066). This result high-
lights the performance bottleneck of the conventional memory
when facing highly concurrent memory access. The memory
bandwidth utilization of HCMA is 13.6% (0.1089/0.8), the
advantage is not obvious as expected. We analyze the reason
as follows. To support high concurrency, HCMA method needs
to read and write OCM more than four times to finish one
memory access request. So the performance of OCM access
must be fast enough, otherwise it will become the bottleneck
and the performance of HCMA method is affected. To verify
the hypothesis, we add two other experiments.

First, we run random access on OCM. The difference from
other experiments is the table size set for the program. Since
OCM only has 256KB capacity, it is impossible to support
table size of 16MB, so we choose 16KB in the experiment.
Even if the data amount is reduced, the memory bandwidth
utilization is only 7.9% (0.1397/1.776). Therefore, we proved
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that excessive access to OCM is the bottleneck. The other
experiment is to run the program with extended scatter/gather
function. To reduce the number of accesses to OCM, we sent
eight read or write requests in one scatter/gather instruction.
The table size is still set to 16MB. The memory bandwidth
utilization is 20.7% (0.1656/0.8). The practical memory band-
width utilization reaches more than 2 times of baseline.

In summary, HCMA method makes better use of memory
bandwidth when applications are highly concurrent. When
introduces scatter/gather instruction, the memory bandwidth
utilization reaches 2.72× of baseline. The performance of
OCM access in Zynq platform is limited, which weakens
the advantage of HCMA method. It is possible to further
optimize the results on other advanced platforms, since HCMA
method has not reached the ideal peak performance in current
platform.

2) Stream Access:
Stream access is a program used by HPC Challenge Bench-

mark to test memory or storage performance. The processor
produces memory access requests with consecutive addresses.
The program includes four simple vector calculations: Copy,
Scale, Add, and Triad [12]. For stream access test, request
addresses are continuous, and the amount of request data is
large. HCMA design reserves the ‘type’ field for extended
instructions.

We modify the program to transfer memory access requests
with 1KB granularity. Figure 7 shows the test results of
memory bandwidth utilization both in baseline and HCMA
mode. In the Copy test, the bandwidth utilization of high
concurrency memory (1.7288/0.8) is 3.46/times of the con-
ventional memory (0.6657/1.066). In the Scale, Add and
Triad tests, the advantages of the high concurrency mode
are not obvious. The fundamental reason is that all of the
tests require frequent communications between CPU cores and
OCM, which interfere with the transfer of requests and lead
to a corresponding reduction in memory bandwidth. However,
the test results are still better than baseline.

3) CG:
The CG benchmark comes from NAS Parallel Benchmarks.

It is developed by NASA to evaluate the performance of large-
scale parallel computer systems. The CG program will send
random and out-of-order access to memory. To evaluate the
performance of applications like CG, presenting the speedup
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performance will be more intuitive. Speedup equals to execu-
tion time of the baseline divided by execution time of HCMA
method. For CG, we get speedup performance increased by
29.87%.

VI. DISCUSSIONS

HCMA method uses SPM to transfer requests and data and
therefore both CPU and FPGA access SPM frequently. To get
better performance, the SPM access latency and bandwidth are
more concerned than capacity. The two Cortex-A9 processors
integrated in our experiment platform have limited ability to
send concurrent requests and the speed of on-chip SPM bus is
also limited. For future work, we will apply HCMA method to
new Zynq Ultra series, which will achieve better performance
with more powerful four Cortex-A53 cores. When multi-cores
share the memory, only software needs to be modified to
ensure the consistency of memory access. The consistency
problem can be solved by traditional methods, such as locking.

HCMA method is a general method. We use Zynq platform
currently because it is integrated with hard cores to access
quickly. Any hardware platforms with cores are available
for HCMA method. For example, HCMA method can be
implemented with software processor cores in FPGA or other
acceleration units that need to access memory, such as PE
arrays. HCMA method can also be used in SoC ASIC design.

VII. CONCLUSIONS

In this study, we propose an SPM-based mechanism for ma-
nipulating highly concurrent memory requests without altering
CPU cores and the NoC protocol. HCMA method also intro-
duces extended memory access instructions through memory
bus with new architecture. We design and implement HCMA
in an MPSoC FPGA platform and compare the performance of
applications with conventional method. The evaluation results
show that HCMA offers higher performance than baseline.
HCMA can be used on MPSoC FPGA platform directly or
integrated into future SoC designs. Our future work will focus
on advanced platform to support high concurrency.
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