
Ah-Q: Quantifying and Handling the Interference

within a Datacenter from a System Perspective

Yuhang Liu∗†, Xin Deng∗†, Jiapeng Zhou∗†, Mingyu Chen∗†‡, Yungang Bao∗†

∗State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
†University of Chinese Academy of Sciences, Beijing, China

‡Zhongguancun Laboratory, Beijing, China

{liuyuhang, dengxin19g, zhoujiapeng22s, cmy, baoyg}@ict.ac.cn

Abstract—Interference among applications frequently occurs
in a datacenter and significantly influences the cost-efficiency
and the user experience. However, it is challenging for us to
quantify the exact intensity of the interference that occurred
in the overall system of a datacenter, because there are many
concurrent applications in a datacenter, and their type can be
either latency-critical (LC) and best-effort (BE). To address this
issue, we present the Ah-Q which includes a theory and a strategy.

First, we propose the “system entropy” (ES) theory to holisti-
cally and analytically quantify the interference in a datacenter to
address this vital issue. The interference is caused by the scarcity
of resources or/and the irrationality of scheduling. As more
appropriate scheduling can compensate for resource scarcity,
we derive the concept of “resource equivalence” to quantify
the effectiveness of a resource scheduling strategy. We evaluate
different resource scheduling strategies to validate the correctness
and effectiveness of the proposed theory.

Moreover, using the theory to eliminate interference, we
propose a new resource scheduling strategy; i.e., ARQ, which
dynamically allocates the isolated resources and the shared
resources to simultaneously harvest the benefits of isolation and
sharing. Our results show that compared to the state-of-the-
art strategies (PARTIES and CLITE), ARQ is more effective
to reduce the tail latency of the LC applications and to increase
the IPC of the BE applications. Compared with PARTIES and
CLITE, ARQ increases the yield (the ratio of satisfactory LC
applications) by 25% and 20%, respectively; when the load is
low, ARQ increases IPC of BE applications by 63.8% and 37.1%,
respectively; ARQ reduces ES by 36.4% and 33.3%, respectively.
The effectiveness of ARQ has saved resources significantly to
achieve the same satisfactory overall user experience.

I. INTRODUCTION

In a typical datacenter, there are two types of applications.

The first type is latency-critical (LC) applications, such as

Redis [1] and Moses [24]. User experience of these LC ap-

plications is affected by tail latency and user expectation. The

second type is best-effort (BE) applications, e.g., Spark [54]

and Fluidanimate [3]. Performance of these BE applications

is usually quantified in terms of instructions-per-cycle (IPC).

To improve resource efficiency in a datacenter, multiple

applications are typically collocated on the same node. How-

ever, interference and contention in shared hardware resources

negatively affect applications’ performance [5, 7, 10, 20, 30, 41,

51, 52, 53]. For LC applications, interference can make an

exceedingly destructive impact because the user experience is

pretty sensitive to the tail latency. For BE applications, though

not fatal effects, the drop of IPC due to interference is still

desired to be as small as possible. The user experience of

BE applications should not be overlooked. We use relative

importance (RI) to term the importance difference between

LC and BE applications.

As many different applications are concurrently running in a

datacenter, we have an array of tail latency or instructions per

cycle (IPC) values, which makes it challenging for us to tell the

exact intensity of the interference that occurred in the overall

system of a datacenter (a detailed example will be presented

in Section II-C). The reason is that the tail latency and IPC

are from an individual application perspective rather than the

system perspective. Hence, how to quantify and reduce the

interference collectively in a datacenter is a vital issue that

needs to be addressed.

Prior work has used various methods to quantify inter-

ference, including the ratio of tail latency over instruction

throughput [44], reduced service rate of a virtual machine

(VM), and the duration of interference [47, 48]. These methods

are effective and make sense in special cases. However, they

are mainly ad hoc, and their units are not well defined, making

it difficult to apply in different scenarios.

In this study, we propose system entropy (ES) to quantify the

interference in a datacenter, following a three-step paradigm

inspired by information entropy. Recall that Shannon has

quantified uncertainty using information entropy in three steps

[40]. Shannon first gave the required properties of information

entropy, then proposed an analytical expression, and proved

that the expression satisfies the required properties. ES is

fundamentally different from information entropy, but will

also be proposed in a similar three-step manner. That is, we

first itemize the required properties of ES, and then propose

the analytical expression of ES, and finally validate that the

expression has the required properties. Based on the analysis

of the interference phenomenon of datacenters, we analyze

the reasons for high tail latency, and then we distinguish and

quantify three different types of interference.

ES systematically quantifies the degree of interference in

a datacenter. Specifically, ES can be decomposed into LC

entropy (ELC) and BE entropy (EBE). ELC quantifies the

interference that LC applications have received out of their

tolerance. EBE quantifies the interference that BE applications

have suffered. If a datacenter only runs LC applications, ES

is just ELC. Similarly, if there are only BE applications on the

978-1-6654-7652-2/23/$31.00 ©2023 IEEE

2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

node, ES is simply EBE. If LC and BE applications co-exist, ES

is the linear combination of ELC and EBE. ES accommodates

the performance degradation of all the collocated applications

in the same datacenter, regardless of their characteristics and

their possibly different performance metrics. In this way,

we can use a single value to quantify interference of the

overall system, and the metric is robust to various collocation

scenarios.

We conducted a series of experiments and show how ES

changes with varying resource allocations and scheduling

strategies. We prove that ELC is correct and effective for

guiding and evaluating different resource scheduling strategies.

For instance, when ELC = 0, the tail latency requirements of

all the LC applications have been satisfied; i.e., the yield (the

ratio of satisfactory LC applications) is 100%. When ELC > 0,

the absolute value of ELC reflects how much of the overall user

experience of the LC applications has not been satisfied.

Many state-of-the-art resource managers in prior studies [8,

12, 21, 22, 26, 27, 33, 34, 35, 36] used software and hardware

resource isolation techniques to strictly isolated collocated ap-

plications, eliminating resource interference. Some researchers

[7, 14, 37] shown that resource isolation may reduce resource

utilization. However, their methods only focus on cache par-

titioning, and are only designed for BE applications. In this

study, we find that strict isolation usually reduces resource

utilization when interference among applications is not severe,

and allowing resources to be flexibly isolated or shared among

applications gives huge potential to mitigate the interference

of LC and BE applications.

In this paper, we make the following main contributions:

Ê We propose the Ah-Q toolkit which includes a theory

to quantify and a strategy to handle the interference within a

datacenter.

Ë We propose the required properties and the analytical

expression of system entropy, ES. ES is a dimensionless single

“figure of merit” of a datacenter, very useful for interference

quantification and evaluation. Based on ES, we propose the

concept of “resource equivalence” to evaluate the effectiveness

of different scheduling strategies.

Ì Using the detected entropy as the feedback signal,

to reduce interference, we design an associative scheduling

strategy, ARQ, which allows partial resource sharing among

BE and LC applications, and dynamically adjusts the size of

isolated and shared resources. A space-time resource utiliza-

tion model has been built to reveal the cause of interference

and interpret the advantages of ARQ over previous strategies.

Í We compare ARQ with the state-of-the-art strategies,

CLITE [36] and PARTIES [8]. Our evaluation results show

that, compared with PARTIES and CLITE, ARQ reduces ES

by 36.4% and 33.3% on average, respectively.

II. THE SYSTEM ENTROPY (ES)

Below, we propose the system entropy (ES) to quantify the

interference occurring in a datacenter, following Shannon’s

information entropy paradigm [40]. First, we present the

required properties of the measure (in sub-section II-A, then

TABLE I
LIST OF SYMBOL ABBREVIATIONS.

Symbol Description

T Li0 Application i’s ideal tail latency

T Li1 Tail latency of application i when it is suffering interference

Mi Maximum tail latency that application i can tolerate

Ai Interference tolerance of application i

Ri Interference that application i suffers

ReTi Remaining tolerance of application i

Qi Interference that the application i cannot tolerate

IPCsolo(i) IPC when application i is running alone

IPCreal(i) IPC when application i is suffering

RI Relative importance

ELC LC entropy

EBE BE entropy

ES System entropy

propose an analytical definition (in sub-sections II-B to II-B),

and finally, validate their consistency (in section III).

A. The Required Properties of ES

Considering the crucial influences of resource amount and

resource scheduling strategy on interference, we require ES to

satisfy the following three properties.

À Dimensionless: ES should have no dimension (e.g., its

unit should not be a time or resource unit), and its value should

be between 0 and 1. The closer the value is to 1, the greater

the interference is.

Á Resource amount sensitiveness: Given a set of co-running

applications and a resource scheduling strategy, when the

number of available resources in a datacenter increases, ES

should decrease or at least not increase.

Â Scheduling strategy sensitiveness: Given a set of co-

running applications and a fixed number of available resources,

when the scheduling strategy has reduced the resource con-

tention among applications, ES should decrease.

In the rest of this section, we introduce the analytical

expression of ES in three different scenarios in a datacenter.

Table I lists the symbol abbreviations used in this paper.

B. The Analytical Expression of ES

The first scenario is that only N different LC applications

are running, but no BE application exists in a datacenter. In

this scenario, ES is ELC, which is defined as follows.

There are three basic attributes for each LC application

in a datacenter. For application i (i = 1,2, ...,N), T Li0 de-

notes application i’s ideal tail latency (i.e., the tail latency

when application i has not suffered any interference), T Li1

is the tail latency of application i when application i is

under collocation, potentially suffering interference, and Mi

is the maximum tail latency that application i can tolerate.

Note that the ideal latency T Li0 can be obtained through

resource isolation technology to temporarily allocate sufficient

resources to application i. We can quantify the interference

tolerance of application i as Eq. (1).

Ai = 1−
T Li0

Mi

(1)

According to our observations, a user of an LC application

determines Mi following two principles: (1) The more critical

the application is, the smaller the tail latency threshold will be.

(2) Users usually choose a value from the flat to small-slope

region as Mi. Therefore, the user-defined target is a threshold

affected by many factors and is only of a reference significance

[42], and thus has some elasticity. In this study, we assume

that the relative elasticity of Mi is 5%.

Since T Li0 < Mi, the range of Ai is [0,1]. The smaller Mi

is, the closer Ai is to 0, and the smaller the application’s

interference tolerance is, and vice versa. We use Ri in Eq.

(2) to quantify the interference that application i suffers.

Ri = 1−
T Li0

T Li1
(2)

Since T Li0 < T Li1, the range of Ri is (0, 1). The smaller T Li1

is, the closer Ri is to 0, indicating that the interference suffered

by the application is small, and vice versa. We use ReTi in Eq.

(3) to represent the remaining tolerance of application i after

being interfered.

ReTi =

(

Ai > Ri ? 1−
T Li1

Mi

: 0

)

(3)

We use Qi in Eq. (4) to represent the interference that

application i cannot tolerate. When the interference application

i suffers (i.e., Ri) is larger than the interference tolerance (i.e.,

Ai), Qi = 1− Mi
T Li1

. Otherwise, Qi = 0.

Qi =

(

Ri > Ai ? 1−
Mi

T Li1
: 0

)

(4)

The Ai, Ri and Qi above inspired us to develop a re-

source scheduling strategy (referred to as ARQ) which will

be presented in Section IV. Moreover, we define ELC as the

interference that the LC applications cannot tolerate, which

can be expressed as Eq. (5).

ELC =
1

N

N

∑
i=1

Qi (5)

The second scenario is that only M different BE applications

are running, but no LC application exists in a datacenter. In this

scenario, ES is the BE entropy (EBE). As shown in Eq. (6), we

define EBE as the slowdown incurred by the interference that

the BE applications have suffered, where IPCsolo(i) denotes

the IPC when the BE application i runs alone and IPCreal(i)
denotes the IPC when the BE application i suffers interference.

EBE = 1−
M

∑
M
i=1

IPCsolo(i)
IPCreal(i)

(6)

When none of the BE applications suffers any interference,

EBE is 0. The higher the interference occurring for application

i is, the larger the ratio of IPCsolo(i) over IPCreal(i) is, and

the closer the value of EBE is to 1.

The third scenario is that LC and BE applications co-exist

in a datacenter. In this scenario, as shown in Eq. (7), ES is

Fig. 1. Tail latency of the LC applications, IPC of the BE application and
the entropy values under resource scheduling strategies A and B. The dotted
box represents the QoS target of the LC applications.

the linear combination of ELC and EBE, where the relative

importance (RI) is involved.

ES = RI×ELC +(1−RI)×EBE (7)

The rationale behind Eq. (7) is to eliminate ELC and EBE

simultaneously to achieve the minimum ES. Generally, the

range of RI is [0, 1]. However, when the resources are in-

sufficient, reducing ELC should take precedence over reducing

EBE, which changes the range of RI into [0.5, 1].

Interestingly, Scenario 1 and 2 are the extreme cases of

Scenario 3. Specifically, when only BE applications exist in

a datacenter, only EBE needs to be considered in system

entropy, and therefore RI is chosen to be 0. This is typical

in conventional high-performance computing. When only LC

applications are running in the system, RI is assigned to be

1. The larger the value of RI, the higher the priority of the

LC applications over that of the BE applications. Datacenter

managers can determine the value of RI by considering several

factors (e.g., the criticality of LC applications, the fairness

among all the applications, and the economic benefit of the

datacenter). In this study, without losing representativeness,

we set RI to 0.8.

In our current model, all LC applications are treated equally,

and so as BE applications. The reason is that we focus on

the criticality difference between LC and BE applications. If

necessary, the ES model can be extended to involve different

RI factors among the same type of applications.

C. Advantages of ES

This section will show the advantages of the proposed ES

over tail latency and IPC with a simple example. Figure 1

shows the tail latency, tail latency threshold of the LC appli-

cations and IPC of the BE applications under two different

strategies (i.e., A and B). With the IPC and tail latency values

shown in Figure 1, it is not straightforward for us to distinguish

which strategy is better, yet we can precisely and reasonably

do this with ES. The reason lies in the following advantages

of ES.

First, ES is concise and easy-to-use in practice. If IPC and

tail latency are used, there will be many individual perfor-

mance data that must be considered simultaneously. Assume

N different LC applications and M different BE applications

coexist in a datacenter. For each strategy, we need to examine

2N+M different performance values (i.e., the tail latency and

the target threshold of each LC application, and the IPC of

each BE application). In the example of Figure 1, even though

there are only three LC applications and one BE application

(the number of collocated applications is much larger in the

real cloud [18]), for each strategy, we still need to examine 7

values at the same time (3 tail latency values, 3 tail latency

thresholds and 1 IPC value), which is a challenging task.

Second, ES reflects the overall user experience of many

collocated applications more comprehensively. The change in

the resource scheduling strategy may improve the performance

of some applications and degrade the performance of others. In

this example, for strategy B, although the tail latency of LC

application Img-dnn is improved, the BE application’s IPC

has dramatically deteriorated. Therefore, with IPC and tail

latency, it is difficult to determine whether the overall user

experience of the datacenter is improved or not. QoS guarantee

does not necessitate reducing ELC to zero; that is, a small ELC

is tolerable. ES reflects this observation in its definition. It is

noteworthy that strategy A is not inferior to strategy B because

the QoS violation in strategy A is tolerable. The LC application

(Img-dnn) QoS violation is small (i.e., 4.4%), which is less

than the elasticity of the tail latency threshold (i.e., 5%), and

the IPC improvement of the BE application (Fluidanimate) is

significant (from 1.15 to 2.63, that is 128.7%), so it is more

reasonable to prefer strategy A over strategy B.

Third, ES can be used to define resource equivalence. Given

the budget and power constraints, it becomes increasingly

difficult to increase the available resources of a datacenter [49].

Therefore, it is crucial to focus on improving the usage and

increasing the utilization of resources rather than increasing

available resources. When evaluating the optimization of a

datacenter, we can express the effectiveness in the following

form: when achieving the same “overall user experience”, how

many resources can be saved by a new strategy compared

to the baseline strategy. We can use ES to evaluate the

improvement of a scheduling strategy over another one in

terms of resource saving. We say a scheduling strategy p1

is inferior to p2 if p1 has to use more resources to achieve

the same ES as p2. Suppose the amount of resources used

by p2 is R, and p1 uses ∆R more sources, this means that

ES(p1, R+∆R) = ES(p2, R). The improvement from p1 to

p2 is equivalent to increasing ∆R amount of resources, and

∆R is referred to as the resource equivalence of strategy p2

relative to p1.

III. VERIFICATION OF ES

In this section, we verify that the analytical expression of ES

has satisfied all the required properties listed in Section II-A.

It is easy to prove that ES has the “dimensionless” property.

We only need to focus on the other two properties.

A. Resource Amount Sensitiveness of ES

To verify how ES varies with the number of available

resources, we run one BE application (Fluidanimate) and three

LC applications (Xapian, Moses and Img-dnn with 20% of

max load) concurrently in a datacenter.

TABLE II
DETAILS OF THE LC, BE AND SYSTEM ENTROPY UNDER THE

UNMANAGED STRATEGY WITH DIFFERENT NUMBERS OF PROCESSING

UNITS.

Cores Applications T Li0 T Li1 Mi Ai Ri ReTi Qi ELC EBE ES

6

Xapian 2.77 23.99 4.22 0.34 0.88 0 0.82 - - -

Moses 2.80 16.54 10.53 0.73 0.83 0 0.36 - - -

Img-dnn 1.41 14.35 3.98 0.65 0.90 0 0.72 - - -

System - - - 0.57 0.87 0 - 0.64 0.20 0.55

7

Xapian 2.77 7.13 4.22 0.34 0.87 0 0.40 - - -

Moses 2.80 6.78 10.53 0.73 0.61 0.36 0 - - -

Img-dnn 1.41 5.65 3.98 0.65 0.59 0 0.29 - - -

System - - - 0.57 0.75 0.12 - 0.23 0.03 0.19

8

Xapian 2.77 4.18 4.22 0.34 0.34 0.01 0 - - -

Moses 2.80 4.43 10.53 0.73 0.37 0.58 0 - - -

Img-dnn 1.41 3.53 3.98 0.65 0.60 0.11 0 - - -

System - - - 0.57 0.44 0.23 - 0 0.02 0

Fig. 2. Impact of the size of available resources on ES (Xapian (20%), Moses
(20%), Img-dnn (20%), Fluidmanate).

Table II shows ELC, EBE and ES of Unmanaged when these

applications run on 6-8 cores and all LLC ways. The max

tail latency that an application can tolerate (i.e., Mi) and the

ideal tail latency T Li0 are constant values. They are measured

with enough resources, so the interference tolerance Ai does

not depend on the number of available resources. When 6

processor cores are available, the real tail latency T Li1 of the

three applications is higher than the Mi, so ReTi is equal to

0. When more processor cores are available, ReTi increases to

0.23, indicating that the remaining tolerance of the system is

high at present, and there exist redundant resources that can

be used to handle more requests.

When resources are scarce (the number of processor cores is

7), ELC is large (i.e., 0.23). At this time, reducing the number

of available processing units to 6, will make the tail latency

deviate significantly from Mi and thus ELC is increased to

0.64. However, if the number of processor cores increases to

8, the interference among applications will be reduced to an

application-tolerable level (∀i,Ri < Ai), and ELC becomes 0 at

this time.

Figure 2 shows ES of Unmanaged and ARQ when the

number of available processing units ranges from 4 to 10,

and the number of LLC ways per set ranges from 4 to 20.

When the number of available resources decreases for both

strategies, ES shows an increasing trend, verifying the second

property of ES. When the number of resources is sufficient

(e.g., 10 processing units, 20 LLC ways), even if with the

Unmanaged strategy, the interference among applications is

small, with ES only 0.006. When the number of resources is

Fig. 3. An illustration of the concept of “resource equivalence”.

insufficient (e.g., 6 processing units, 20 LLC ways), resource

contention is severe, which causes ES as high as 0.53. For

the ARQ strategy, when the resources are sufficient (e.g., 10

processing units, 20 LLC ways), ES is 0.008. However, when

the number of resources is insufficient (6 processing units, 20

LLC ways), ES of the ARQ strategy is 0.15.

B. Scheduling Strategy Sensitiveness of ES

Resource equivalence describes the difference in the number

of resources between two different scheduling strategies when

they reach the same ES. The concept of “resource equivalence”

is illustrated in different forms as shown in Figure 3(a) and

(b). Figure 3(a) shows ES of two strategies: Unmanaged and

ARQ (the experimental setup will be described in Section V).

The x-axis is the total number of available processing units,

and the y-axis is the corresponding ES. To make ES reach

0.25, the Unmanaged strategy requires 7.61 cores, while the

proposed ARQ strategy only requires 5.61 cores. The two-core

resource that ARQ saved is the resource equivalence of the

ARQ strategy compared to the Unmanaged strategy. Similarly,

when ES is 0.4, the resource equivalence is 1.83 cores.

Figure 3(b) shows the isentropic lines of different schedul-

ing strategies when ES = 0.3. Each line represents the number

of processing cores (y-axis) and LLC ways (x-axis) required

to achieve the same ES (i.e., 0.3). As shown in Figure 3(b),

when there are more than 10 LLC ways (the right side of

the red dashed line), the isentropic lines of ARQ, CLITE and

PARTIES are close to each other (i.e., resource equivalence R

is close to 0). However, when the number of available LLC

ways < 10, the total amount of available resource is scarce

and resource conflict is severe, and ARQ is able to achieve

the same ES with much fewer processing cores. For example,

when 8 LLC ways are available, compared to PARTIES and

CLITE, ARQ has saved 1 processing core for the data center,

that is, the resource equivalence is 1 processing core (i.e.,

12.5% processing cores). Similarly, using ARQ instead of

the Unmanaged strategy brings a resource equivalence of 2

processing cores to the data center when 8 LLC ways are

available (i.e., 25% processing cores have been saved).

IV. THE ARQ SCHEDULING STRATEGY

In this section, we propose a scheduling strategy called ARQ

to combine the advantages of resource sharing and resource

isolation to reduce system entropy. The name of the strategy

is to denote that Ai, Ri and Qi in section II-B are three vital

factors of an LC application.

Fig. 4. An illustration of the space-time model (for brevity, only one resource
slice and eight time-slices are considered).

A. Demonstrating the Key Insight via a Space-time Model

It is observed that, resource isolation can reduce perfor-

mance uncertainty, and resource sharing can increase resource

utilization and overall throughput. Therefore, we exploit the

combination of resource isolation and resource sharing to

make ES as small as possible.

The state-of-the-art resource scheduling strategies [7, 8, 16,

27, 36] used resource isolation techniques to guarantee the

QoS. That is, each application can only use the resources

allocated to itself but cannot use the resources allocated to

other applications. However, the resource isolation in these

strategies leads to low resource utilization.

Take the processing unit resources as an example. We

assume that only when the datacenter can provide a service

rate of at least U , the QoS target of the LC applications can be

satisfied. We also assume that one core can provide a service

rate of 0.8U , and two cores can provide a service rate of 1.6U .

If we allocate only one core to the LC application, the tail

latency of the LC applications will violate the QoS target,

since the service rate is 0.8U , which is less than U . However,

if two cores are allocated to the LC application, the QoS target

of the LC application can be met, but it would degrade the

throughput of the BE application due to the waste of resources.

As shown in Figure 4, a space-time model is presented to

illustrate different resource scheduling schemes. For brevity,

we only consider two LC applications (i.e., LC1 and LC2)

and one BE application (i.e., BE), and examine the usage of

only one resource-slice (e.g., one processing unit or one LLC

way) and eight time-slices. There are three different scenarios.

In scenario (a), each application is running alone, so we can

know exactly the space-time resource requirement of each

application. For a time-slice, when there exist two or more

ticks, resource contention will occur. For instance, in time-

slice 6, all the three applications need the same resource-slice,

thus resource conflict occurs.

In scenario (b), the resource-slice is isolated, and is exclu-

sively allocated to LC1, so only LC1 can use the resource-

slice, guaranteeing the QoS of LC1. However, during some

time-slices (e.g., time-slice 3), the resource-slice is not needed

by LC1, but other applications that require the resource-slice

cannot use it, incurring resource waste.

In scenario (c), the resource is shared among all the appli-

cations although the LC applications take precedence over the

BE applications. At the beginning of time-slice 3, the resource

owner is changed from LC1 to BE, increasing the throughput

of BE. Meanwhile, it is noteworthy that the change of the

resource ownership is not free, due to the context switching

overhead and/or the cache pollution. The triangle represents

that the resource-slide can boost the application performance

with overhead. At the beginning of time-slice 4, the resource

owner is transferred from BE to LC2, improving the QoS of

LC2.

Comparing (c) with (b), the number of crosses is reduced

from 10 to 6 and there are four more triangles in scenario(c),

and the resource utilization ratio has been almost doubled. The

key insight is that, although resource isolation is an effective

means for reducing performance uncertainty, resource sharing

is crucial for improving system utilization. Therefore, in terms

of the overall user experience, neither complete isolation nor

sharing is the optimal strategy, and we need to simultaneously

harvest the advantages of both isolation and sharing.

B. Design of the ARQ Strategy

A resource region includes a number of cores and cache

ways. ARQ divides resources into shared and isolated regions

based on the aforementioned key insight. Each LC application

can use not only the resource of its own isolated region,

but also the resources of the shared region, while the BE

application can only run in the shared region. If an LC

application running in the shared region can satisfy its QoS

target, the resources of the isolated region will be reduced

to 0, indicating that it can safely share resources with other

applications. Once the QoS of an LC application is severely

interfered with while running in the shared region, the ARQ

strategy will detect this interference, and gradually increase the

resources of its isolated region until the QoS target is satisfied.

Algorithm 1 shows the ARQ strategy. ARQ periodically

(e.g., every 500ms [8], 1s [33] or 2s [36]) monitors the tail

latency of each LC application and the IPC of each BE

application to calculate ReT of each LC application and ES.

Then, ARQ adjusts resource allocation according to ReT and

evaluates the effectiveness of the adjustment by ES. If the

adjustment increases ES, we cancel the adjustment and try to

take new adjustment action to avoid trapping in local optimum,

Algorithm 1 ARQ Resource Scheduling Algorithm.

1: function ARQ

2: isAd just←False, ES ← 1

3: while True do

4: Monitor the tail latency values of the LC applications and the IPC values of

BE applications periodically

5: E ′S ← ES

6: ES ← computeEntropy()

7: // ReT is an array, the elements of which are the remaining tolerance of each

LC application.

8: ReT ← computeRemainingTolerance()

9: if isAd just and ES > E ′S then

10: Cancel the last adjustment and do not allow the last victim region to be

penalized in the next 60s.

11: isAd just← False

12: else

13: isAd just← AdjustResource(ReT)

14: end if

15: end while

16: end function

17:

18: function ADJUSTRESOURCE

19: victimRegion← findVictimRegion(ReT)

20: bene f iciaryRegion← findBeneficiaryRegion(ReT)

21: // Choose one type of the resources (i.e., core, LLC, or memory bandwidth, etc)

of victimRegion.

22: ∆R← findVictimResource(victimRegion)

23: Move one unit resource of type ∆R from the victimRegion to the

bene f iciaryRegion

24: return whether the resource has been actually adjusted

25: end function

26:

27: function FINDVICTIMREGION

28: for each ReTi in descending order do

29: if ReTi > 0.1 and application i has isolated resource that allows to be

penalized then

30: return the isolated region of application i

31: end if

32: end for

33: return the shared region

34: end function

35:

36: function FINDBENEFICIARYREGION

37: Identify the application i that has the smallest ReT.

38: if ReTi < 0.05 then

39: return the isolated region of application i

40: else

41: return the shared region

42: end if

43: end function

that is, do not allow the old adjustment to occur again in the

next 60s.

In the AdjustResource function, the goal is to move one

slice of resource from a rich region to a poor region, hope-

fully decreasing ES. We determine the victim and beneficiary

regions by the findVictimRegion and the findBeneficiaryRegion

functions according to the ReT array which records the ReT of

each LC application. Then, using the findVictimResource, we

determine which type of resources will be moved or penalized.

Then, we move the selected resource from the victim region

to the beneficiary region.

In the function findVictimResource, we maintain a finite

state machine which is as same as that in [8] to determine

the order of resource adjustment. Each state of the state

machine represents a resource type (e.g., processing units,

LLC capacity, and memory bandwidth). The function will turn

to the next type when the current resource type cannot be

penalized.

The function findVictimRegion takes the ReT array as input

and outputs the victim region which donates resources to other

regions. It traverses the ReT array in descending order to

identify the application whose ReT is larger than 0.1. An

application with a large ReT may not have isolated resources,

so we need to traverse the ReT array in descending order to

determine the victim region. If no isolated region satisfies the

requirements, the shared region will be returned.

Then, the findBeneficiaryRegion function takes the ReT ar-

ray as input and outputs the beneficiary region which receives

resources from the victim region. We only need to concern the

application with the smallest ReT. if its remaining tolerance

is less than 0.05, the isolated region of the application will

become the beneficiary region. If all the LC applications have

high ReT, the shared region will be the beneficiary region.

If the victim and beneficiary regions are both shared regions,

no LC applications need more resources and no LC appli-

cations can donate resources, thus an equilibrium has been

reached and the resources adjustment will not be enforced.

Monitoring interval is configured to be 500ms, which is

consistent with that of PARTIES (see Section 4.3 in [8]). We

find that smaller interval allows the scheduler to detect and

react to QoS violation more timely, but tail latency becomes

less stable, and increases the difficulty to accurately calculate

the tail latency. Larger intervals ease tail latency calculations,

but each QoS violation will last for a longer period. We find

500ms to be a practically suitable interval from evaluation.

C. Allocation Comparison

ARQ combines the benefits of resource sharing and isola-

tion, sharing resources among the applications that have high

ReT, and isolating the applications that have low ReT. In the

following, we present two snapshots to illustrate and compare

the allocation processes of ARQ and PARTIES, when the load

of Xapian is low and high, respectively. The experimental

setup will be described in Section V.

Figure 5 shows the resource allocation snapshot when the

load of Xapian is 30%. Compared with PARTIES, ARQ

makes the BE application (i.e., Stream) have more available

resources. PARTIES allocates the isolated resources for each

application to preferentially reduce ELC. However, the user

experience of the BE application is low because it can only

use 10% processing unit and 30% LLC ways. ARQ finds that

sharing resources among all the applications except Xapian

can also make ELC 0. Therefore, in ARQ strategy, Xapian

was allocated isolated resources (10% processing unit and 25%

LLC ways) to isolate interference, while Img-dnn and Moses

shared the shared region resources with the BE application.

Although ELC of PARTIES and ARQ are both 0, ARQ is

better since it achieves a much lower EBE.

Figure 6 shows the resource allocation snapshot when the

load of Xapian is 90%. Compared with PARTIES, ARQ makes

the high-load LC application (i.e., Xapian) have more available

resources, since the other LC applications can be satisfied

only with the shared region resources. Given the high load

of Xapian, both PARTIES and ARQ want to allocate more

isolated resources for Xapian. However, to simultaneously

satisfy the QoS targets of Moses and Img-dnn, PARTIES

Fig. 5. A snapshot of the resource allocation of PARTIES and ARQ (Xapian
(30%), Moses (20%), Img-dnn (20%) and Stream). Compared with PARTIES,
ARQ makes the BE application (i.e., Stream) have more available resources
(from the shared region).

Fig. 6. A snapshot of the resource allocation of PARTIES and ARQ (Xapian
(90%), Moses (20%), Img-dnn (20%) and Stream). Compared with PARTIES,
ARQ makes the high-load LC application (i.e., Xapian) have more available
resources, since the other LC applications can be satisfied only with the shared
region resources.

allocates 50% cores and 60% LLC ways while ARQ only

allocates 30% cores and 35% LLC ways by sharing resources

among applications. As a result, PARTIES can only allocate

50% cores and 40% LLC ways to Xapian which is not enough

to satisfy the QoS target of Xapian, while ARQ allocates 70%

cores and 65% LLC ways to Xapian which can significantly

reduce ELC and ES. We will evaluate ARQ to compare it with

the state-of-the-art strategies in detail in Section VI.

D. Overhead Comparison

Like other QoS-aware scheduling strategies [8, 27], ARQ

involves overhead from two parts: monitoring the system state

(e.g., the tail latency and IPC of each application), and allocat-

ing system resources (e.g., cache, processor core) periodically.

Unlike ML-based scheduling strategies [33, 36], ARQ does not

require complex computations of resource allocations, so there

is negligible overhead of computing the resource allocation.

The monitoring overhead is negligible since we only read a

few counters every 500ms (see the last paragraph in Section

IV-B for discussion on the monitoring interval). The overhead

of resource adjustment mainly comes from warmup of cache

ways for cache re-partitioning and context switching for core

re-assignment, and it depends on the frequency of resource

re-adjustment.

When the contention is high, PARTIES can result in ping-

ponging effects between severely resource-starved applica-

tions, which incurs overhead everytime resources are switched.

Moreover, due to the long queues that have been built up

in the system, core allocation in PARTIES may would need

more than 500ms to take effect. Compared to PARTIES, ARQ

has much less ping-ponging effects, because ARQ applies

the shared region as a resource pool which provides more

resources for LC applications, reducing the likelihood of QoS

violations.

Our evaluations have involved the overhead of ARQ men-

tioned above, and the experimental results that will be pre-

sented in next sections show that ARQ has small overhead,

achieving much less QoS violations than PARTIES (see Figure

8, 9 and 10).

V. EXPERIMENTAL METHODOLOGY

We conduct experiments on a real server of a datacenter.

Table III shows our experimental platform. We use the taskset

command to set the core affinity for each application and

use Intel’s Cache Allocation Technology (CAT) [17, 19] to

allocate the LLC for each core. CAT allows for a given number

of ways to be assigned to a specific application to limit the

amount of LLC space the application can occupy. Consistent

with previous studies [8], we disabled Hyper-Threading in

our experiments. We evaluate the scheduling strategies with

several application combinations. Each combination contains

multiple LC and BE applications from different domains.

TABLE III
EXPERIMENTAL PLATFORM.

Component Specification

CPU Intel Xeon E5-2630 v4 (10 cores)

Processor Core Frequency 2.2GHz

Operating System CentOS 7 (kernel 5.6.11)

L1 Caches 32KB×10, 8-way set associative, split D/I

L2 Caches 256KB×10, 8-way set associative

L3 Caches 25MB, 20-way set associative

Main Memory 16GB×7, 2400MHz DDR4

NIC Intel Corporation I350 Gigabit

Network Connection (1Gbps)

Xapian is a search engine that is widely used in popular

websites and software frameworks. In our experiments, the

search index is built from a dump of the English version of

Wikipedia, and query terms are chosen randomly, following

a Zipfian distribution [2, 15]. Moses is a statistical machine

translation system. We drive Moses using randomly chosen

dialogue snippets from the English-Spanish corpus [45]. Img-

dnn is a handwriting recognition application. We drive the

application using randomly chosen samples from the MNIST

database [13]. Masstree [28] is a scalable in-memory key-

value store. We drive Masstree using a modified version of

the Yahoo Cloud Serving Benchmark [9, 23]. Sphinx [50]

is an accurate speech recognition system. Silo [46] is a in-

memory transactional database. These LC applications are

from Tailbench [23] and are instantiated with 4 threads.

TABLE IV
PARAMETER OF THE LC APPLICATIONS.

Xapian Moses Img-dnn Masstree Sphinx Silo

Tail Latency Threshold (ms) 4.22 10.53 3.98 1.05 2682 1.27

Max Load (QPS) 3400 1800 5300 4420 4.8 220

We present an example to show how we determine the

maximum load that each LC application can tolerate. We select

4 LC applications (i.e., Xapian, Moses, Img-dnn and Sphinx),

run each application with different number of processing units,

gradually increase their arrival rate of requests, and measure

the corresponding tail latency. In this study, the 95th percentile

Fig. 7. The relationship between tail latency and arrival rate of requests with
1, 2, 4 and 8 processing units (the dashed lines denote the maximal service
rate under varying core counts).

tail latency is used without losing generality. As shown in

Figure 7, the lines of different colors correspond to the number

of processor cores as 1, 2, 4, and 8. For each LC application,

as the arrival rate of requests gradually increases, tail latency

increases slowly at the beginning. When the arrival rate of

requests exceeds a certain threshold, the tail latency increases

exponentially. Similar to previous research [8, 36], we refer to

the tail latency at the load threshold as tail latency threshold,

which also means the maximum tail latency that an application

can tolerate (i.e., the Mi in Eq. (1)), and refer to the load

threshold as max load, which means the maximum load that

an application can sustain under a reasonable tail latency

target. Table IV summarizes the max load and the tail latency

threshold.

We run different BE applications in our experiments: Flu-

idanimate, Stream and Streamcluster, respectively. Fluidani-

mate and Streamcluster are taken from PARSEC benchmark

suite [3]. Fluidanimate conducts a liquid simulation that uses

a computational method to solve the Navier-Stokes equation.

Streamcluster solves the online clustering problem. Like the

LC applications, Fluidanimate and Streamcluster are both

instantiated with 4 threads. Stream [32] is a well-known

memory intensive benchmark that performs computation on

a large array that cannot fit in the LLC. To generate severe

interference to other applications on the processing units, LLC

and memory bandwidth, we instantiate Stream with 10 threads.

In addition to the proposed ARQ, we will evaluate the

following scheduling strategies using the theory of system

entropy and resource equivalence.

Unmanaged: This strategy does not distinguish between

LC and BE applications, and relies on the default scheduling

strategy of the operating system (i.e., Linux’s Completely Fair

Scheduler), and does not use any isolation mechanism.

LC-first: This strategy relies on the real-time scheduling

strategy of the operating system (i.e., round-robin). It sets the

LC applications to the real-time priority. When the real-time

process is ready, if the current core is running a non-real-time

process, the real-time process immediately preempts the non-

real-time process.

PARTIES [8]: This strategy leverages hardware and soft-

ware resource partitioning technology to adjust resource al-

locations dynamically. It strictly partitions resources between

collocated applications without resource sharing. It calculates

the slack of multiple LC applications during a fixed time

interval and determines whether resources need to be upsized

or downsized according to the slack of each LC application. In

this way, it ensures that the QoS targets of the LC applications

are not violated.

CLITE [36]: This strategy is also based on resource iso-

lation. It uses Bayesian optimization to identify or predict

desirable resource allocations, and builds a predictive model

for different resource partitioning configurations by sampling

several points in large configuration space.

VI. EVALUATION OF THE ARQ STRATEGY

In this section, we evaluate the ARQ strategy with LC,

BE and system entropy in the situation of constant load and

fluctuating load, respectively.

A. The Case of Constant Load

Collocated with Fluidanimate: In this experiment, we

concurrently run three LC applications (i.e., Xapian, Moses,

and Img-dnn) and one BE application (i.e., Fluidanimate), and

the load of the LC applications is constant.

Figure 8 shows ELC, EBE and ES of different strategies when

the load of Moses and Img-dnn is 20% (left) and 40% (right)

of the max load, respectively, and Xapian’s load varies from

10% to 90%.

When the load of the LC applications is low, the Unmanaged

strategy achieves the lowest ES among all the strategies,

showing the benefits of resource sharing. The reason is that

the interference between applications is not severe at this time,

and resource sharing can achieve higher resource utilization

than other strategies. However, when the load is high, despite

low EBE, the rapid increase in ELC makes ES also increase

rapidly, since the Unmanaged strategy does not take any action

to guarantee the QoS of the LC applications.

Compared with the Unmanaged strategy, the LC-first strat-

egy allows the LC applications, to preempt the resources of

the BE applications if needed. Although the LC-first strategy

has a much lower ELC than the Unmanaged strategy, it incurs

a substantial increase in EBE.

Both PARTIES and CLITE use complete resource isolation

to mitigate interference among applications and satisfy the

QoS of LC applications. When the load of the LC applications

is low, many resources are allocated for the BE application

with the premise of guaranteeing the QoS of the LC applica-

tions, which leads to low EBE and ES. When the load is high

(e.g., the load of Moses and Img-dnn is 20%, respectively, the

Xapian’s load is larger than 50%), they allocate most resources

to the LC applications but few resources to the BE application,

which incurs high EBE and ES.

Fig. 8. Results when Xapian, Moses, Img-dnn and Fluidanimate are collo-
cated.

As shown in Figure 8(a), ARQ achieves the lowest ES

among all the strategies. ARQ reduces ELC more significantly

than other strategies, implying that QoS of the LC applications

has been guaranteed preferentially. ARQ has the lowest EBE

during most time among all the strategies based on resource

isolation. When the load is extremely high, it is reasonable

that ARQ has higher EBE than other strategies, because ARQ

lets LC applications preferentially occupy the resources of

the shared region. In this manner, the characteristic of all the

applications has been well utilized to improve the overall user

experience of all applications.

Figure 8(b) shows more detailed data regarding the tail

latency and IPC for one scenario (i.e., when the load of

Moses and Img-dnn is 40%). Taking the Unmanaged as the

baseline, ARQ reduces the tail latency by 66.5% on average,

while CLITE reduces by 43.6% and PARTIES reduces by

37.2%. When the load is low (i.e., Xapian’s load 6 50%),

compared with PARTIES and CLITE, ARQ increases IPC by

63.8% and 37.1%, respectively. When the load is pretty high

(i.e., Xapian’s load > 70%), ARQ preferentially optimizes tail

latency rather than IPC, and allocates resources to guarantee

the QoS of the LC applications.

Collocated with Stream: In this experiment, we instantiate

Stream with 10 threads to represent another type of severe

interference among applications. Figure 9 shows ELC, EBE and

ES of each strategy and detailed tail latency and IPC.

Neither the Unmanaged nor the LC-first strategy can satisfy

the QoS of the LC applications even if the load is low, resulting

Fig. 9. Results when Xapian, Moses, Img-dnn and Stream are collocated.

Fig. 10. ELC, EBE and ES when Xapian, Moses, Img-dnn and Stream are
collocated (the load of Moses is fixed to 20%).

in high ELC and ES. When the load of the LC applications is

low (e.g., Xapian’s load 6 50%, and the load of Moses and

Img-dnn is 20%, respectively), the other four strategies except

the Unmanaged strategy can maintain low ELC. When the load

of Xapian is 70%, and the load of Moses and Img-dnn is 40%,

respectively, only CLITE and ARQ can eliminate ELC and ES

to an ideal level. When the load of LC applications is pretty

high (i.e., the load of Xapian is 90%, and the load of Moses

and Img-dnn is 40%, respectively), only ARQ can achieve low

ELC and ES.

When the load of Img-dnn and Moses is 40%, respectively,

and the load of Xapian is 90%, neither PARTIES nor CLITE

can find a feasible resource allocation to satisfy the QoS of

Fig. 11. ELC, EBE and ES when Img-dnn, Moses, Sphinx and Stream are
collocated (the load of the LC applications is constant).

the LC applications. Nevertheless, ARQ has reduced ELC to

nearly zero (i.e., 0.06). Moreover, ARQ reduces ES by 73.4%

(i.e., from 0.94 to 0.25), while CLITE and PARTIES reduce

ES by 53.2% and 22.3%, respectively.

In the experiments above, ARQ achieves the highest yield

(the ratio of satisfactory LC applications) and the lowest

system entropy. Compared with PARTIES and CLITE, ARQ

increases the yield by 25% and 20% respectively (from 60%

and 65% to 85%). ARQ reduces ES by 36.4% and 33.3%

respectively (from 0.22 and 0.21 to 0.14).

Collocation with diverse loads: In this experiment, while

the load of Moses is fixed to 20%, the load of Xapian and

Img-dnn both varies from 10% to 90% when collocated with

Stream to comprehensively show the benefits brought by ARQ.

Figure 10 shows the entropy heatmap of ELC, EBE and ES

when either PARTIES or ARQ scheduling strategy is used.

By adopting the shared region, ARQ allocates more re-

sources for BE applications when the load of LC applications

is low (e.g., ELC equals 0), thus leading to lower EBE. When

the load is low (i.e., for the top-left region of each subgraph),

more resources are allocated to the shared region since the QoS

target of LC applications can be easily satisfied with small

private regions. BE applications can obtain more resources

from the shared region compared to PARTIES and achieve

lower EBE (details are shown in the two subgraphs in the

middle of Figure 10). When the load is high (i.e., for the

bottom-right region of each subgraph), LC applications can

obtain more resources from the shared region, thus leading to

lower ELC at the expense of higher EBE. The detailed reasons

are described in Figure 5 and Figure 6 in Section IV-C.

Another application collocation: We use another combi-

nation of applications (Img-dnn, Moses and Sphinx as the

LC applications and Stream as the BE application) to further

evaluate the scheduling strategies.

Figure 11 shows ELC, EBE and ES of different strategies

when the load of Moses and Sphinx is 20% (left) and 40%

(right) of the max load, respectively, and Img-dnn’s load varies

from 10% to 90%. When the load is low, ES of ARQ is

almost as the same as that of PARTIES. When the load is high,

Fig. 12. Tail latency, IPC and ES when 6 LC applications and 2 BE
applications are collocated (the load of the LC applications is 20%).

compared with the PARTIES, ARQ guarantees the QoS target

of the LC applications, reducing ES by 40.93% on average.

Collocation of even larger number of applications: In

this experiment, to further evaluate the effectiveness and ro-

bustness of the strategies, we double the number of collocated

applications. We concurrently run 6 different LC applications

(Moses, Xapian, Img-dnn, Sphinx, Masstree and Silo from

Tailbench) and 2 different BE applications (Fluidanimate and

Streamcluster from PARSEC). Figure 12 shows tail latency

and IPC when the load of each of the LC applications is 20%.

As shown in Figure 12, the number of collocated applica-

tions has been doubled on the same datacenter, and resource

contention becomes even more severe. Compared with PAR-

TIES, ARQ drastically reduces the tail latency of Moses and

Sphinx (from 29.88 to 5.75 ms, and from 7904 to 2514 ms,

respectively) at the cost of a slight increase on the tail latency

of Xapian (from 4.06 to 4.17 ms, still satisfying the QoS

target according to Table IV), thus reducing ES significantly.

Compared to PARTIES, ARQ reduces ES by 36.4% (from 0.33

to 0.21). Considering Figure 8 and 12, we can conclude that

the scalability of ARQ is very well.

B. The Case of Fluctuating Load

As many LC applications in a datacenter experience load

fluctuations (e.g., high load in the daytime and low load

at night) during execution [6], in this section, we evaluate

different strategies with a fluctuating load. We still choose

Xapian, Moses and Img-dnn as LC applications, and Stream

as BE applications. We set the load of Moses and Img-dnn as

20% and vary the load of Xapian from 10% to 90%. Figure

13(a) shows how Xapian’s load fluctuates. Figure 13(b) shows

the changes of ELC, EBE and ES for LC-first, PARTIES and

ARQ strategies. Figure 13(c) shows how ARQ and PARTIES

dynamically schedule resources to adapt to load fluctuations.

Figure 13 shows the data during 250 seconds (i.e., 500

data points). During this process, ARQ has 59 tail latency

violations, while PARTIES has 105 tail latency violations.

These tail latency violations are mainly due to the resource

adjustment after the load fluctuations.

In the beginning, the load of all the three LC applications

is low, and thus both PARTIES and ARQ can satisfy the QoS

target of all the LC applications. PARTIES only allocates 1

processing unit and 6 LLC ways to the BE application, while

ARQ allocates 7 processing units and 15 LLC ways to the

shared region. Consequently, compared with PARTIES, ARQ

has reduced EBE by 22.3% (i.e., from 0.85 to 0.66), and thus

Fig. 13. ELC, EBE and ES and the corresponding scheduling process of LC-
first, PARTIES, and ARQ (Xapian’s load is fluctuating).

the user experience of the BE applications has been improved

significantly.

During the 100s-120s, Xapian’s load is increased to 70%.

PARTIES fails to find an allocation to satisfy the QoS target,

leading to high ELC. ARQ succeeds in the exploration to find

an allocation that satisfies the QoS target. Although it causes

some increase in EBE, it deserves and is reasonable because

the overall user experience in terms of ES has been improved

significantly. During 120s-140s, Xapian’s load is increased to

90%; although neither PARTIES nor ARQ can reduce ELC to

0, ARQ has much lower ELC and ES than PARTIES.

In Figure 13, there are some spikes in the ELC curve

of PARTIES, because PARTIES tentatively downsizes the

resources of an LC application to maximize the resources of

the BE application. If the LC application no longer satisfies

the QoS target after downsizing, it would immediately recover

from the previous incorrect downsize action. As shown in

Figure 13, ARQ effectively mitigates the spiking phenomenon,

even though it has a downsize action that is more aggressive

than that of PARTIES.

ARQ eliminates the spiking phenomenon by occupying the

resources of the shared region. When the load of the LC

applications increases and the available resource is insufficient,

PARTIES gradually allocate more resources to satisfy the QoS

target. In ARQ, to avoid the rapid rise of the tail latency, the

LC applications quickly preempt the resources in the shared

region from the BE applications. Although this would harm

the throughput of the BE applications, it is worthwhile because

it guarantees the QoS of the LC applications.

VII. RELATED WORK

Interference Characterization: Scott et al. [48] proposed

using the service rate under interference and the duration of

time interference lasts to characterize interference. Prior work

[4, 20, 31, 38, 43, 55] used the values of IPC or execution time

before and after the applications have been interfered with to

quantify the interference. However, for the LC applications,

users do not concern about IPC, and the change of IPC

may be caused by interference from other applications or

by fluctuations in their load. Therefore, it is not appropriate

to use IPC to quantify the interference for LC applications.

Many researchers [10, 11, 30, 53, 57] use the tail latency before

and after the interference to quantify the interference of the

LC applications. However, the ideal tail latency for different

applications varies greatly (from the microsecond level to the

second level). Hence, we propose ES to unify the interfer-

ence of different LC and BE applications. As a measure of

interference, ES has interpretability and measurability, and its

analytical expression has all the required properties. Therefore,

ES is more formal, reasonable, and systematical than the ad

hoc metrics [44, 47, 48]. There may be applications that care

about both latency and IPC. In that case, we cloud either

choose a more critical performance metric, or come up with

an aggregated metric that takes various metrics into account.

It is a challenging scenario even without colocation, and we

will leave it as future work.

Resource Scheduling: How to schedule resources to satisfy

the QoS target of different types of applications in a datacenter

is a vital issue. Previous studies used software and hardware

level resource isolation techniques to manage resources to

eliminate interference on specific resources. Many feedback-

based resources managers have been proposed to detect and

respond to QoS violations using application state information

(such as tail latency and input load). Heracles [27] collocates

the LC applications and the BE applications safely using a

threshold-based method to manage interference. PARTIES [8]

dynamically adjusts the resource allocation of each application

by monitoring the tail latency to further improve the resource

utilization. CLITE [36] uses Bayesian optimization to explore

resource sensitivity to find an allocation with optimal perfor-

mance. Sturgeon [34] uses decision trees and binary search

to find out an allocation that can satisfy power consumption

constraints and QoS targets. Twig [33] uses multi-agent deep

reinforcement learning to improve the energy efficiency of

multiple LC applications. Although CLITE, Sturgeon and

Twig can all coordinately schedule multiple resources in one

step, they have limitations. Specifically, Sturgeon relies on

prior application knowledge and offline pre-training; CLITE

and Twig involve large amount of computations at runtime

to find the best allocation among a large pool of candidate

allocations, incurring more overhead and potentially worsening

applications’ performance. Besides, CuttleSys [25] regularly

evaluates the effect of current allocation and makes decisions

to adapt to the changes of the applications by collaborative

filtering and dynamically dimensioned search. Sinan [56] uses

CNN and Boosted Tree to predict end-to-end latency and QoS

violation probability based on historical system information.

Stretch [29] proposes a method to statically partition the ROB

and LSQ capacity resources of collocated tasks. They all

perform complete resource isolation for all the applications,

but have not explored the opportunities of sharing resources

at the right time to maximize resource utilization and system

throughput. Dunn [39] also uses CAT to partition the cache.

However, Dunn cares more about system fairness while ARQ

focuses on both fairness (between LC and BE applications)

and overall system performance.

VIII. CONCLUSIONS

As cloud workloads are rapidly changing, it is challeng-

ing to achieve the perfect match between applications and

the underlying architecture in a datacenter. However, it is

crucial for a datacenter to simultaneously achieve high task

concurrency (for high resource utilization) and high QoS (in

terms of yield and IPC). In this study, we present the Ah-Q

which includes a theory and a strategy to address this issue.

Specifically, we have proposed system entropy, ES, a holistic

and analytical solution to the problem of quantifying the

interference incurred by resource contention in a datacenter.

We have proposed the ARQ algorithm to harvest the benefits of

resource isolation and sharing. We demonstrate the correctness

and effectiveness of ES and ARQ on the platform of a real

datacenter. Extensive experiments validated that ES is correct

and useful, and the associated ARQ strategy has improved the

overall user experience significantly. We also show that ES and

ARQ are easy-to-use and robust in diverse scenarios.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their

insightful comments. We would also like to thank Professor

Zhiwei Xu and Ninghui Sun for their valuable suggestions.

The first author thanks Professor Mingfa Zhu for his guidance.

This work is supported in part by the National Natural Science

Foundation of China (No. 62090023, 61772497) and National

Key RD Program of China (No. 2016YFB1000201).

REFERENCES

[1] “Redis,” April 2022. [Online]. Available: Redis.io

[2] R. Baeza-Yates, “Applications of web query mining,” in Proceedings of

the European Conference on Information Retrieval. Springer, 2005,
pp. 7–22.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in Proceedings of the

17th International conference on Parallel Architectures and Compilation

Techniques (PACT), 2008, pp. 72–81.

[4] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated management of
multiple interacting resources in chip multiprocessors: A machine learn-
ing approach,” in Proceedings of the 2008 41st IEEE/ACM International

Symposium on Microarchitecture. IEEE, 2008, pp. 318–329.

[5] X. Bu, J. Rao, and C.-z. Xu, “Interference and locality-aware task
scheduling for mapreduce applications in virtual clusters,” in Proceed-

ings of the 22nd International symposium on High-performance Parallel

and Distributed Computing (HPDC), 2013, pp. 227–238.

[6] M. C. Calzarossa, M. L. Della Vedova, L. Massari, D. Petcu, M. I.
Tabash, and D. Tessera, “Workloads in the clouds,” in Principles of

Performance and Reliability Modeling and Evaluation. Springer, 2016,
pp. 525–550.

[7] Q. Chen, S. Xue, S. Zhao, S. Chen, Y. Wu, Y. Xu, Z. Song, T. Ma,
Y. Yang, and M. Guo, “Alita: comprehensive performance isolation
through bias resource management for public clouds,” in SC20: Proceed-

ings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. IEEE, 2020, pp. 1–13.

[8] S. Chen, C. Delimitrou, and J. F. Martı́nez, “Parties: Qos-aware resource
partitioning for multiple interactive services,” in Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, 2019, pp. 107–120.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of

the 1st ACM Symposium on Cloud Computing, ser. SoCC ’10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
143–154. [Online]. Available: https://doi.org/10.1145/1807128.1807152

[10] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for
heterogeneous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4, pp.
77–88, 2013.

[11] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp.
127–144, 2014.

[12] C. Delimitrou and C. Kozyrakis, “Bolt: I know what you did last
summer... in the cloud,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 599–613, 2017.

[13] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[14] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma, and
D. Sanchez, “Kpart: A hybrid cache partitioning-sharing technique for
commodity multicores,” in 2018 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2018, pp. 104–
117.

[15] D. G. Feitelson, Workload modeling for computer systems performance

evaluation. Cambridge University Press, 2015.

[16] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan: Mitigating
interference at microsecond timescales,” in Proceedings of the 14th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 20), 2020, pp. 281–297.

[17] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” Volume 3B: System programming Guide, Part, vol. 2, no. 11, 2011.

[18] J. Guo, Z. Chang, S. Wang, H. Ding, and Y. Bao, “Who limits the
resource efficiency of my datacenter: an analysis of alibaba datacenter
traces,” in the International Symposium, 2019.

[19] Intel, “Improving real-time performance by utilizing cache allocation
technology,” Intel Corporation, April, 2015.

[20] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim, “Measuring
interference between live datacenter applications,” in SC’12: Proceed-

ings of the International Conference on High Performance Computing,

Networking, Storage and Analysis. IEEE, 2012, pp. 1–12.

[21] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in Pro-

ceedings of the 2015 48th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). IEEE, 2015, pp. 598–610.

[22] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
qos for latency-critical workloads,” ACM SIGPLAN Notices, vol. 49,
no. 4, pp. 729–742, 2014.

[23] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalu-
ation methodology for latency-critical applications,” in Proceedings of

the 2016 IEEE International Symposium on Workload Characterization

(IISWC). IEEE, 2016, pp. 1–10.

[24] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens et al., “Moses:
Open source toolkit for statistical machine translation,” in Proceedings of

the 45th annual meeting of the association for computational linguistics

companion volume proceedings of the demo and poster sessions, 2007,
pp. 177–180.

[25] N. Kulkarni, G. Gonzalez-Pumariega, A. Khurana, C. A. Shoemaker,
C. Delimitrou, and D. H. Albonesi, “Cuttlesys: Data-driven resource
management for interactive services on reconfigurable multicores,” in
Proceedings of the 2020 53rd Annual IEEE/ACM International Sympo-

sium on Microarchitecture (MICRO). IEEE, 2020, pp. 650–664.

[26] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in Proceedings of the 2014 ACM/IEEE 41st International Symposium

on Computer Architecture (ISCA). IEEE, 2014, pp. 301–312.

[27] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of the

42nd Annual International Symposium on Computer Architecture, 2015,
pp. 450–462.

[28] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast
multicore key-value storage,” in Proceedings of the 7th ACM European

Conference on Computer Systems, ser. EuroSys ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 183–196.
[Online]. Available: https://doi.org/10.1145/2168836.2168855

[29] A. Margaritov, S. Gupta, R. Gonzalez-Alberquilla, and B. Grot, “Stretch:
Balancing qos and throughput for colocated server workloads on smt
cores,” in 2019 IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2019, pp. 15–27.

[30] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-
up: Increasing utilization in modern warehouse scale computers via
sensible co-locations,” in Proceedings of the 44th annual IEEE/ACM

International Symposium on Microarchitecture, 2011, pp. 248–259.

[31] J. Mars, L. Tang, and M. L. Soffa, “Directly characterizing cross
core interference through contention synthesis,” in Proceedings of the

6th International Conference on High Performance and Embedded

Architectures and Compilers, 2011, pp. 167–176.

[32] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE computer society technical com-

mittee on computer architecture (TCCA) newsletter, vol. 2, no. 19–25,
1995.

[33] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-
agent task management for colocated latency-critical cloud services,”
in Proceedings of the 2020 IEEE International Symposium on High

Performance Computer Architecture (HPCA). IEEE, 2020, pp. 167–
179.

[34] P. Pang, Q. Chen, D. Zeng, C. Li, J. Leng, W. Zheng, and M. Guo, “Stur-
geon: Preference-aware co-location for improving utilization of power
constrained computers,” in Proceedings of the 2020 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2020,
pp. 718–727.

[35] J. Park, S. Park, and W. Baek, “Copart: Coordinated partitioning of
last-level cache and memory bandwidth for fairness-aware workload
consolidation on commodity servers,” in Proceedings of the Fourteenth

EuroSys Conference 2019, 2019, pp. 1–16.

[36] T. Patel and D. Tiwari, “Clite: Efficient and qos-aware co-location
of multiple latency-critical jobs for warehouse scale computers,” in
Proceedings of the 2020 IEEE International Symposium on High Per-

formance Computer Architecture (HPCA). IEEE, 2020, pp. 193–206.

[37] L. Pons, J. Sahuquillo, V. Selfa, S. Petit, and J. Pons, “Phase-aware cache
partitioning to target both turnaround time and system performance,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 11,
pp. 2556–2568, 2020.

[38] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kalogeraki, “Fact: a
framework for adaptive contention-aware thread migrations,” in Proceed-

ings of the 8th ACM International Conference on Computing Frontiers,
2011, pp. 1–10.

[39] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez,
“Application clustering policies to address system fairness with intel’s
cache allocation technology,” in 2017 26th International Conference on

Parallel Architectures and Compilation Techniques (PACT), 2017, pp.
194–205.

[40] C. E. Shannon, “A mathematical theory of communication,” The Bell

system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
[41] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for a

simultaneous multithreaded processor,” in Proceedings of the ninth

International conference on Architectural Support for Programming

Languages and Operating Systems, 2000, pp. 234–244.
[42] A. Sriraman, “Unfair data centers for fun and profit,” Wild and Crazy

Ideas (ASPLOS), 2019.
[43] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The

application slowdown model: Quantifying and controlling the impact of
inter-application interference at shared caches and main memory,” in
2015 48th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO). IEEE, 2015, pp. 62–75.
[44] N.-H. Sun, Y.-G. Bao, and D.-R. Fan, “The rise of high-throughput

computing,” Frontiers of Information Technology and Electronic Engi-

neering, vol. 19, no. 10, pp. 1245–1250, 2018.
[45] J. Tiedemann, “Parallel data, tools and interfaces in opus.” in Lrec, vol.

2012, 2012, pp. 2214–2218.
[46] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy

transactions in multicore in-memory databases,” in Proceedings

of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, ser. SOSP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 18–32. [Online]. Available:
https://doi.org/10.1145/2517349.2522713

[47] S. Votke, J. A. Jaleel, A. Suresh, M. Delasay, S. Doroudi, and
A. Gandhi, “Optimal markovian dynamic control of interference-prone
server farms,” in Proceedings of the 2019 IEEE 27th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS). IEEE, 2019, pp. 295–308.
[48] S. Votke, S. A. Javadi, and A. Gandhi, “Modeling and analysis of

performance under interference in the cloud,” in Proceedings of the

2017 IEEE 25th International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2017, pp. 232–243.

[49] M. M. Waldrop, “The chips are down for moore’s law,” Nature News,
vol. 530, no. 7589, p. 144, 2016.

[50] W. Walker, P. Lamere, P. Kwok, B. Raj, R. Singh, E. Gouvea, P. Wolf,
and J. Wölfel, “Sphinx-4: A flexible open source framework for speech
recognition,” Sun Microsystems, 12 2004.

[51] C. Wang, B. Urgaonkar, G. Kesidis, A. Gupta, L. Y. Chen, and R. Birke,
“Effective capacity modulation as an explicit control knob for public
cloud profitability,” ACM Transactions on Autonomous and Adaptive

Systems (TAAS), vol. 13, no. 1, pp. 1–25, 2018.

[52] Y. Xu, M. Bailey, B. Noble, and F. Jahanian, “Small is better: Avoiding
latency traps in virtualized data centers,” in Proceedings of the 4th

annual Symposium on Cloud Computing, 2013, pp. 1–16.

[53] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 607–
618, 2013.

[54] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in 2nd USENIX Workshop

on Hot Topics in Cloud Computing (HotCloud 10), 2010.

[55] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2: Cpu performance isolation for shared compute clusters,” in Pro-

ceedings of the 8th ACM European Conference on Computer Systems,
2013, pp. 379–391.

[56] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou,
“Sinan: Ml-based and qos-aware resource management for cloud
microservices,” ser. ASPLOS 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 167–181. [Online]. Available:
https://doi.org/10.1145/3445814.3446693

[57] L. Zhao, Y. Yang, K. Zhang, X. Zhou, T. Qiu, K. Li, and Y. Bao,
“Rhythm: component-distinguishable workload deployment in datacen-
ters,” in Proceedings of the Fifteenth European Conference on Computer

Systems, 2020, pp. 1–17.

