
Planaria: Pattern Directed Cross-page Composite Prefetcher
Yuhang Liu, Mingyu Chen

Institute of Computing Technology, Chinese Academy of Sciences,

State Key Laboratory of Processor Chips, China

Beijing, China

ABSTRACT
Given the memory wall, the performance of the memory system

significantly influences the user experience of mobile phones. The

system cache (SC), located on the memory side, is shared among all

CPUs and GPUs within the mobile phone, serving as the last line

of defense before resorting to time-consuming off-chip memory

access. Managing SC is a challenge due to its large working set

and irregular access patterns. Despite occupying a substantial on-

chip area, SC’s effectiveness in terms of hit rate is relatively low. It

has been observed that neither state-of-the-art cache replacement

policies nor increasing cache size significantly improve SC per-

formance. Prefetchers designed for higher-level caches cannot be

seamlessly applied to SC due to the absence of the required program

counter (PC) on the memory side and the violation of stringent

power constraints in mobile phones by aggressive prefetch traffic.

In this study, we present Planaria, comprising two sub-prefetchers

(SLP and TLP) and a coordinator, aiming to achieve high accuracy

and coverage simultaneously. The two sub-prefetchers exploit intra-

and inter-page regularities through self and transfer learning, re-

spectively. The coordinator explicitly decouples the learning and

issuing phases of the sub-prefetchers. Experimental results demon-

strate that Planaria has enhanced overall system performance in

terms of instructions per cycle (IPC) by an average of 28.9%, 21.9%,

and 15.3% over no prefetcher, BOP, and SPP, respectively. More-

over, Planaria proves to be power-efficient, incurring only a 0.5%

increase in power consumption, while BOP and SPP increase power

consumption by 13.5% and 9.7%, respectively.

1 INTRODUCTION
As mobile phone applications are increasingly memory-intensive,

the efficiency of memory system significantly affects the overall

performance and thus the user experience of a mobile phone system.

Mobile phones exhibit a notably higher average memory access

time (AMAT) compared to desktops and servers, primarily due to

their use of low-power DDR (LPDDR) memory for energy conser-

vation [4].

As the lowest level cache in the memory hierarchy, system cache

(SC) serves as the last defense line before resorting to the time-

consuming off-chip memory access. It plays a crucial role in miti-

gating memory access latency and power consumption. However,

the existing performance of SC is far lower than the expectations of

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

DAC’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0601-1/24/06.

https://doi.org/10.1145/3649329.3656499

the designers. The reason is that the high-level caches have already

filtered much spatial and temporal locality, leaving SC few op-

portunities to exploit. Consequently, the highly irregular accessing

patterns cause the low hit rate of SC and complicate the prefetchers’

prediction of the address for future access. To validate this analysis,

we evaluated the state-of-the-art prefetchers SPP [6] and BOP [8],

which rely on identifying regularities from the accessing sequence

and predicting the next accessing address. Our experimental re-

sults indicate that SPP and BOP only achieve a modest reduction

in average memory access time (AMAT) by 10.8% and 3.3%, respec-

tively. Moreover, both prefetchers incur additional memory traffic

overhead, with SPP at 15.9% and BOP at 23.4%.

To enhance the performance of the system cache (SC) without

introducing excessive additional memory traffic, it is essential to

design a dedicated hardware prefetcher. Through memory trace

analysis, we identified two distinct types of accessing regularities

at the system cache level that can be leveraged for optimization:

intra-page regularity and inter-page regularity. Here, intra-page

regularity represents that a group of blocks within a memory page

(referred to as the footprint snapshot) are accessed repeatedly dur-

ing a certain time interval. Inter-page regularity represents that

memory pages close in address space usually have similar footprint

snapshots and thus can learn from each other.

In this study, we propose a hardware prefetcher, Planaria, which

includes two sub-prefetchers and a coordinator. The two sub-prefetchers

are designed to utilize intra- and inter-page regularities. Specifi-

cally, the intra-page sub-prefetcher issues prefetch requests for a

memory page by referencing the history information of the page

itself. The inter-page sub-prefetcher allows the memory pages close

in address space to share their patterns. To coordinate the opera-

tion of sub-prefetchers, the coordinator decouples the hardware

prefetching as a “pattern learning + prefetch issuing” process and

manages the learning and issuing operations separately.

In this paper, we make the following main contributions:

➊ We propose a self-learning driven sub-prefetcher (SLP) to

handle intra-page accessing patterns.

➋ We propose a transfer-learning driven sub-prefetcher (TLP)

to handle inter-page accessing patterns. TLP increases the prefetch

coverage by referencing the patterns of neighboring pages.

➌ We propose Planaria, which integrates the SLP and TLP. Ex-

perimental results show that on the targeted mobile phone appli-

cations, Planaria has reduced AMAT over no prefetcher and the

state-of-the-art prefetchers, BOP and SPP by 24.3%, 21.3% and 15.1%,

respectively. While BOP and SPP increase the power consumption

of memory systems by 13.5% and 9.7%, Planaria only incurs 0.5%

extra power consumption.

The rest of this paper is organized as follows. Section 2 presents

the skeleton of Planaria. Section 3 and Section 4 illustrate the design

of the intra- and inter-page sub-prefetchers, respectively. Section 5

1

https://doi.org/10.1145/3649329.3656499

DAC’24, June 23–27, 2024, San Francisco, CA, USA Yuhang Liu, Mingyu Chen

provides details about the experimental setup. Section 6 presents

the evaluation results and analysis. Section 7 overviews the related

work. Finally, Section 8 concludes our study.

2 THE SKELETON OF PLANARIA
Planaria has two key components, including two sub-prefetchers

(i.e., Self-Learning directed Prefetcher (SLP) and Transfer Learning

directed Prefetcher (TLP)). SLP exploits the intra-page spatial local-

ity, which will be introduced in Section 3. TLP utilizes the similarity

of accessing patterns of neighboring memory pages, which will be

introduced in Section 4.

Figure 1 shows the structure and operation of Planaria. Pla-

naria operates by taking demand requests as input and producing

prefetch requests as output. First, Planaria transfers the address and

arrival time of the current demand request to each sub-prefetchers

and launches their learning phases. Second, the learning phase

learns the memory accessing pattern and delivers the meta-data to

the issuing phase. Meta-data comprises the page number and the

bitmap-pattern representing which blocks should be prefetched in

that memory page. Planaria selects only one sub-prefetcher through

a specific rule to enable its issuing phase. The selection rule en-

ables the SLP-issuing preferentially and enables TLP-issuing only

when SLP does not have history information to support generating

prefetching requests. The selected sub-prefetcher executes its issu-

ing phase to calculate the prefetching address. Finally, the generated

prefetch requests are inserted into the prefetch queue.

The coordination framework of Planaria has harvested the bene-

fits and overcome the shortcomings of prior coordination mecha-

nisms. Prior proposals [3, 5, 7, 11], integrate different sub-prefetchers,

where each sub-prefetcher is monolithic. This monolithic structure

means that the learning and issuing phases of each sub-prefetcher

were indivisible. One key insight of our design is that, the learn-

ing phase and the issuing phase of each sub-prefetcher need to

be decoupled and managed separately. In the learning phase, each

sub-prefetcher learns the pattern from all the memory accesses

and provides the meta-data for calculating prefetch addresses. In

the issuing phase, each sub-prefetcher generates prefetch requests

according to the meta-data delivered by the learning phase. Specifi-

cally, the learning phase of all the sub-prefetchers should be enabled

simultaneously, allowing each sub-prefetcher to observe the com-

plete memory accessing sequence and thus it is full-pattern directed.

Conversely, the issuing phase of the sub-prefetchers is enabled se-

lectively to balance the prefetching accuracy and coverage.

3 INTRA-PAGE SUB-PREFETCHER
3.1 Observation of Intra-page Accessing Pattern
Observation 1: Spatial locality is more dominant than temporal

locality for the intra-page memory accessing pattern of system

cache level.

Figure 2 shows the characteristics of the intra-page accessing

pattern. The X-axis presents the arrival time (cycle) of the accesses,

and the Y-axis is the block number in a memory page, which is

from 0 to 63 when the size of a page is 4KB and the size of a block is

64B. As shown in Figure 2, we can get the following characteristics.

➊ Several different blocks in a memory page are accessed during

a brief time interval, highlighting distinctive spatial locality. If these

accessed blocks are regarded as a snapshot, the constituent and

structure of the snapshot are stable. The stability will be validated

by the experiment introduced in Figure 4. ➋ The reuse distance of

the snapshots is usually long, indicating a limited temporal locality.

➌ The access order of these blocks is non-deterministic, resulting

in a highly unpredictable sequence of deltas.

3.2 Self-Learning Directed Prefetcher
According to observation 1, we propose an intra-page prefetcher:

SLP (an acronym for Self-Learning directed Prefetcher) to exploit

the spatial locality of an intra-page pattern. SLP records the foot-

print snapshot for memory pages that have been accessed recently

and prefetches all the other blocks in a footprint snapshot whenever

any blocks of the snapshot have been accessed.

Different from previous researches [1, 16], whichmap the bitmap-

pattern to the signature comprising the program counter (PC) and

the trigger access, SLP exploits PN as the signature to index the

footprint snapshot. This design is motivated by the expensive cost

of obtaining a PC at the low level of the memory hierarchy and the

difficulty of distinguishing different PCs from numerous devices in

a heterogeneous computer system. While using only the page num-

ber (PN) as a signature might potentially reduce prefetch accuracy

if the access pattern of a memory page changes frequently during

program phase switches, our quantitative experiments reveal mini-

mal alterations in the footprint snapshot; that is, the constituent

and structure of the snapshot remain stable.

We conducted an experiment to quantitatively validate the simi-

larity of footprint snapshots across different program phases. The

methodology is illustrated in Figure 3. Initially, we determined the

window size by counting the number of accessed blocks in a page.

Subsequently, for each page, we recorded the blocks accessed within

a window and compared them with those of the preceding window.

The overlap rate was employed as a metric for the similarity be-

tween two time windows. This rate was calculated by dividing the

number of blocks accessed in both the current and previous win-

dows by the total number of blocks accessed in the current window.

We analyzed the memory traces of all the targeted applications and

calculated the average overlap rate of the windows for all pages.

The results are shown in Figure 4. The average overlap rate of the

applications is more than 80%. As a qualitative experiment, the

results are strong enough to support that the snapshot change is

limited during the switch of program phases. Therefore, using the

page number as the signature of a footprint snapshot is feasible

and accurate.

Figure 1 illustrates the structure and operation of SLP, where

page number (PN) is used as the index of the tables. The DRAM

comprises four channels, each with a respective SC. A 4KB memory

page is partitioned into four segments, each consisting of 16 blocks,

and each segment is statically mapped to a specific DRAM channel.

Consequently, the prefetcher of the SC in each channel utilizes a

16-bit bitmap pattern to track whether the corresponding block

has been accessed. SLP uses the last access time field and time-out

mechanism to evict the outdated entries. Upon the arrival of a

demand access, the accumulation table (AT) will check whether

some blocks of the same page have been accessed (Step ➊). If AT

fails to find a matching entry, the request is inserted into the filter

2

Planaria: Pattern Directed Cross-page Composite Prefetcher DAC’24, June 23–27, 2024, San Francisco, CA, USA

(PN, pattern) 23 Address

(PN, pattern)

4

Learning phase

SLP-Learning

TLP-Learning

1

SLP covers?
Enable

SLP-Issuing

TLP covers ?
Enable

TLP-Issuing

Issuing phase

Yes

Yes

No
Output:

prefetch requestsMetadata :
(Pattern, Page number)

Pattern from SLP

(011011011)

Page number (PN)

Input : demand requests

P
N

 <
<

 1
2

 |
 (

1
<<

 6
)

P
N

 <
<

1
2

 |
 (

2
<<

 6
)

Pattern from TLP

(001010011)

Page number (PN)

P
N

 <
<

12
 |

 (
2

 <
<

6
)

P
N

 <
<

12
 |

 (
4

 <
<

6
)

Planaria

5

SLP TLP POC

Figure 1: The structure of Planaria.

Arriving time of requests

0

63

31

15

46

B
lo

ck
 n

u
m

b
er

 in
 a

m

em
o

ry
 p

ag
e

 Blocks included
in a region are

fixed.

The reuse distance is long.

17

16

6
Deltas in a
region are
Variable.

Cycles

4
1

2

3

54

-22
16

-4

Figure 2: The footprint snapshot of a memory page.

Interval 1 Interval 2 Interval 3

Step 1

Step 2

Window size = 20

Overlap rate = 50%

A memory page with 64 blocks
(shadow ones are accessed blocks)

Timeline

An Interval includes 20
(window size) accesses.

Figure 3: The method for calculating the overlap rate.

table (FT) (Step ➋). FT is responsible for filtering snapshots that

include too few blocks. Once an FT entry has recorded three offsets

(three demand requests), the request is then inserted into AT (Step

➌). When an AT entry is evicted due to time-out, SLP interprets

this as the detection of a complete and stable snapshot, and the

recorded bitmap pattern is transferred to the Pattern History Table

CFM HoK Id-V QSM TikT Fort HI3 KO NBA2 PM Average
83.0% 84.1% 84.7% 83.3% 83.6% 82.6% 84.7% 80.7% 83.3% 81.7% 83.2%

Figure 4: The overlap rate of different applications.

(PT) (Step ➍). Based on PT, prefetch requests will be generated if

the demand request is a cache miss (Step ➎).

4 INTER-PAGE SUB-PREFETCHER
4.1 Observation of Inter-page Accessing Pattern
Observation 2: Significant fractions of memory pages can learn

memory accessing pattern from their neighboring pages on system

cache level.

We conducted an experiment to quantitatively validate observa-

tion 2. First, we represent the accessing pattern with a bitmap for

every memory page, using “1” and “0” to denote whether a given

block in the page has been accessed or not. Subsequently, if the

difference between the bitmap of two pages is small (e.g., under

a threshold, 4 bits) and the two pages are close in address space

(i.e., the difference between page numbers is under the distance
threshold, the two pages will be regarded as learnable neighbors.

The fraction of memory pages exhibiting this neighboring property

for various distance thresholds is depicted in Figure 5. The results

show that on average 26.95% (or 39.26%) of memory pages have

neighboring property when the distance threshold is set as 4 (or

64).

3

DAC’24, June 23–27, 2024, San Francisco, CA, USA Yuhang Liu, Mingyu Chen
CFM HoK Id-V QSM TikT Fort HI3 KO NBA2 PM Average

distance=64 32.2% 36.2% 29.4% 31.9% 49.4% 29.1% 39.5% 40.4% 58.8% 45.7% 39.3%
distance=4 24.1% 24.5% 16.7% 24.8% 36.1% 21.2% 18.5% 24.4% 46.4% 32.9% 27.0%

Figure 5: The proportion of learnable neighboring pages of
the targeted applications.

4.2 Transfer-Learning Directed Prefetcher
To exploit the inter-page regularity, we design an inter-page prefetcher:

TLP (an acronym for Transfer-Learning directed Prefetcher) based

on observation 2. Figure 6 illustrates the fundamental concept of

TLP. Memory page A does not have self-learned metadata to gen-

erate prefetch requests due to the lack of the history information.

Instead, it has two candidate neighboring pages to learn from: page

B and C, because the difference of their page numbers is under the

threshold (i.e., 64). The common pattern of page A and B involves

6 blocks, whereas the common pattern of page A and C involves 3

blocks. Therefore, page B, rather than C, exhibits greater similarity

to page A in terms of memory access patterns. Thus, page A utilizes

the pattern learned from page B to generate prefetches. On page

A, the blocks indicated by the learned pattern but not yet accessed

will be prefetched.

Page B
page NO = 0x1000

Page C
page NO = 0x1020

Page A
page NO = 0x1010

Memory A memory page with 64 blocks

Common pattern of
page A and B,

involving 6 blocks

Common pattern of
page A and C,

involving 3 blocks

Blocks that have
been accessed

Blocks that will be
prefetched

Figure 6: The diagram of the TLP sub-prefetcher.

As shown in Figure 1, the major component of TLP is the Recent

Page Table (RPT) which has 128 entries. RPT is indexed by page

number and each entry contains a 16-bit bitmap to record whether

the blocks have been accessed recently. To effectively checkwhether

a page can refer to another page, 128 1-bit “Ref” fields are allocated

in each entry. If the difference between the page number of entry i
and entry j is larger than a threshold, the jth “Ref” in entry i and
the ith “Ref” in entry j are set as “1”; otherwise “0”. If the size of
RPT is N, then each entry will have N-1 useful “Ref” items, because

referring to a page itself is meaningless.

Table 1: Experimental setup configurations.

Memory trace-generating system configurations

CPUs

8 cores, ARM

2 Cortex-A76, 2.6 GHz, 512KB L2

2 Cortex-A76, 1.92 GHz, 512KB L2

4 Cortex-A55, 1.8 GHz, 128KB L2

Mobile Three-level caches, 4MB L3, with

phone CPU-side hardware prefetchers

GPUs ARM Mali-G76MP10, 720 MHz,

Two-level caches

Others NPU, ISP, DSP

Process 7nm

Memory system configurations

Simulator

System 4 MB, 16-way per set

Cache 64B per cache block

4 channels, 1 rank per channel,

8 banks per channel, LPDDR 4

tRAS=51, tRCD=16, tRRD=12,

tRC=76, tRP=16, tCCD=8, tRTP=9,

DRAM tWTR=12, tWR=22, tRTRS=2,

tRFC=216, tFAW=48, tCKE=9,

tXP=9, tCMD=1, Burst Length=16,

DDR Frequency=1.2GHz, FR-FCFS

Figure 1 illustrates the structure and operation of TLP. Initially,

RPT is empty. When page 0x100 is accessed, TLP allocates a new

entry (entry 0) in RPT. As other RPT entries are invalid at present,

all “Ref” fields in entry 0 are set as “0”. Then, page 0x110 is accessed.
TLP allocates a new entry (entry 2) and sets Ref0 as “1” because

page 0x100 and page 0x110 are neighboring pages in space. After

several memory accesses, page 0x110 is accessed again. TLP finds

the Ref0 of entry 2 is “1” and the bitmaps of entry 0 and entry 2

have four same bits. In this case, TLP predicts that page 0x100 and
page 0x110 have a similar memory accessing pattern. Comparing

the bitmaps of entry 0 and entry 2, if a bit in entry 0 is “1” but in

entry 2 is “0”, TLP will prefetch the block on page 0x110.

5 EVALUATION METHODOLOGY
Table 1 displays the architecture parameters of the baseline system.

We prefer "physical running to collect real traces + trace-driven

simulation + RTL performance evaluation" to full-system simula-

tion. Table 2 shows the targeted applications which run on mobile

phones and are in the top10 list of a region [9, 10]. We modified

DRAMSim2 [12] to evaluate different candidate architectures, in-

cluding LPDDR chips. DRAMSim2 reads memory traces as input,

simulates the progress of processing these memory requests and

output the statistics of performance. We implemented and syn-

thesized the baseline system and Planaria using Verilog to further

evaluate the overall performance and estimate the area overhead.

We implemented a hardware module for monitoring the memory

bus within the mobile phone to record the memory access trace.

Each trace entry includes the physical access address, the access

type (i.e., read or write), the request device ID (i.e., CPU, GPU,

DSP, etc.) and the access arrival time. The memory traces are real

records of physical mobile phones, which can accurately reflect

the impacts of the deep memory hierarchy, the complex software

stack and the user activities on memory accesses. The power model

4

Planaria: Pattern Directed Cross-page Composite Prefetcher DAC’24, June 23–27, 2024, San Francisco, CA, USA

Table 2: The targeted representative applications.

Workloads Description Length
(M)

Abbr.

Cross Fire Mobile First-person shooter 67.48 CFM

Honor of Kings Multiplayer MOBA 71.37 HoK

Identity V Asymmetric battle arena 68.27 Id-V

QQ Speed Mobile 3D racing mobile game 69.45 QSM

TikTok Short video sharing app 70.82 TikT

Fortnite Multiplayer battle royale 66.71 Fort

Honkai Impact 3 3D action game 67.65 HI3

Knives Out Multiplayer battle royale 68.00 KO

NBA 2K19 Basketball game 67.71 NBA2

PUBG Mobile Multiplayer battle royale 67.71 PM

Figure 7: Hit rate of SC with different prefetchers.

provided by the manufacturers of mobile phones is embedded into

our simulator.

6 RESULTS AND ANALYSIS
This section shows and analyses the experimental results.

Figure 8: AMAT of the memory system with different
prefetchers.

Figure 7 and 8 display the performance improvement of the

targeted applications in terms of AMAT and the hit rate of SC, re-

spectively. Planaria has reduced AMAT by 24.3%, 21.3%, and 15.1%

over no prefetcher, BOP, and SPP, respectively. In the majority of

instances, an increase in the cache hit rate corresponds to a de-

crease in Average Memory Access Time (AMAT). Nevertheless, in

the cases of applications Fort, NBA2, and PM, the utilization of

BOP augments the cache hit rate while elevating AMAT compared

to scenarios devoid of prefetchers. We evaluated the time of each

stage for individual access and found that the discerned rationale be-

hind BOP’s suboptimal performance in the contexts of Fort, NBA2,

and PM lies in its generation of numerous superfluous prefetches,

thereby engendering a substantial augmentation in memory traffic.

Conversely, Planaria increases the cache hit rate without much

extra memory traffic, which indicates higher accuracy.

Figure 9: Planaria performance breakdown.

Figure 9 illustrates the breakdown of the performance improve-

ment of Planaria. SLP contributes to nearly 80% of overall improve-

ment. For applications CFM, QSM, HI3, KO and NBA2, the effect of

TLP is limited. Patterns existing in CFM, QSM, HI3, KO and NBA2

are what SLP excels at. The limitation of TLP for those applications

is due to the lack of opportunities to issue prefetches. Especially,

TLP contributes to most of the improvement for Fort. When SLP

frequently fails to issue prefetches, TLP which is the low prior-

ity sub-prefetcher gets a chance to issue prefetches. That is, TLP

contributes more to the overall improvement at this time.

Planaria incurs an average additional power consumption of

merely 0.5%, whereas BOP and SPP result in 13.5% and 9.7%, respec-

tively. For each application, Figure 10 displays the power consump-

tion of memory system when SC employing different prefetchers.

Planaria increases the memory system’s power consumption by

0.2% to 2.8%. For the applications HI3 and PM, Planaria even re-

duces the power consumption of memory system by 3.3% and 1.2%,

respectively. The storage of Planaria is 345.2KB, which is only 8.4%

of the capacity of 4MB SC.

Figure 10: Power consumption of the memory system with
different prefetchers.

7 RELATEDWORK
We review the related work of the three components of Planaria, re-

spectively. Intra-page prefetchers can be classified into delta-based

prefetchers, spatial prefetchers and content-directed prefetchers.

Delta-based prefetchers [6, 8, 15] learn the pattern of the delta his-

tory to predict future deltas and add current access address and

delta to calculate the prefetch address. Due to the filtering effect of

higher-level caches and out-of-order scheduling in the core and the

5

DAC’24, June 23–27, 2024, San Francisco, CA, USA Yuhang Liu, Mingyu Chen

cache/memory sub-systems, it is difficult to detect a regular delta

sequence on SC. Section 6 has validated that the typical delta-based

prefetchers cannot perform well for SC.

Spatial prefetchers exploit spatial locality by online [1, 16] or

offline profiling [17] or compiler hints [18]. Spatial prefetchers

mainly rely on a PC to exploit the correlations between instruction

flow and data flow. However, it is expensive to transfer the PC from

multiple cores to low-level cache [13]. We proposed a practical

prefetcher (i.e., SLP) that does not need a PC to address this issue.

Content-directed prefetchers [2, 20] track the delicate relation-

ship between “data flow” and “address flow”, the completeness of

which has been undermined by the filtering effect of the high-level

caches. As it is difficult to detect indirect accessing patterns for SC,

we cannot apply a content-directed prefetcher to SC.

Existing inter-page prefetchers [6, 14] try to launch the prefetch-

ing without relearning any delta history patterns or doing any

other warmup in the new memory page. However, making a pre-

diction based on small global history tables shared by all pages

would incur many mispredictions, which cannot be tolerated by

the strict power consumption constraints of mobile phones and

also causes cache pollution. To improve the prefetching accuracy,

our study proposes more restrictions on inter-page prefetching,

i.e., comparing the difference of page numbers and bitmap-patterns

between two pages. Another difference between our scheme and

prior studies is that, our scheme focuses on learning the spatial

bitmap-pattern rather than the delta-based pattern of a memory

page, and then conditionally applies it to another page.

The coordinator of existing hybrid prefetchers can be divided

into two categories: serial coordinators and parallel coordinators.

Serial coordinators enable the sub-prefetchers in priority order.

TPC [7] includes three sub-prefetchers and assumes that each sub-

prefetcher can recognize the boundary of its expertise. Thus, the

serial coordinator of TPC is a hardwired decision logic that enables

each sub-prefetcher in turn. Parallel coordinators enable all the

sub-prefetchers in parallel. ISB [5] and MISB [19] combine an ir-

regular prefetcher with a regular prefetcher, enabling the irregular

prefetcher and regular prefetcher simultaneously to improve the

prefetch coverage. Our coordinator is different from the serial or

parallel coordinators, but harvests their benefits through “parallel

training and serial issuing”. It explicitly decouples the learning and

issuing phases of the sub-prefetchers and manages them separately

to improve the accuracy and coverage simultaneously.

8 CONCLUSION
Hardware prefetching is a pivotal technique for optimizing memory

system performance, which impacts significantly the overall com-

puter system efficiency. However, designing a hardware prefetcher

that achieves both high performance and power efficiency poses a

challenge, considering the specific characteristics of the targeted

applications, architectural features, and the stringent power con-

sumption constraints of mobile phones. To tackle this challenge,

we leverage the following insights: the dominant regularity of the

System Cache (SC) reveals itself as spatial locality rather than tem-

poral locality. Additionally, within the targeted applications, both

intra- and inter-page regularities exist concerning spatial locality.

We have devised two sub-prefetchers utilizing self-learning and

transfer-learning to exploit intra- and inter-page regularities, re-

spectively. Furthermore, we have decoupled prefetching into ’the

learning phase and the issuing phase’ and introduced a coordinator

to seamlessly integrate the two sub-prefetchers.

ACKNOWLEDGMENTS
This work is partially supported by the National Key Research and

Development Program of China under Grant No. 2023YFB4503904,

and the Innovation Funding of ICT, CAS under Grant No. E361100.

REFERENCES
[1] Rahul Bera, Anant V Nori, Onur Mutlu, and Sreenivas Subramoney. 2019.

Dspatch: dual spatial pattern prefetcher. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 531–544.

[2] Robert Cooksey, Stephan Jourdan, andDirkGrunwald. 2002. A stateless, content-

directed data prefetching mechanism. ACM SIGPLAN Notices, 37, 10, 279–290.
[3] Eiman Ebrahimi, Onur Mutlu, and Yale N Patt. 2009. Techniques for bandwidth-

efficient prefetching of linked data structures in hybrid prefetching systems.

In proceedings of the IEEE 15th International Symposium on High Performance
Computer Architecture. Raleigh, North Carolina, USA, 7–17.

[4] John L Hennessy and David A Patterson. 2011. Computer architecture: a quan-
titative approach. Elsevier.

[5] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory accesses for

improved correlated prefetching. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, 247–259.

[6] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Narasimha Reddy, Chris Wilk-

erson, and Zeshan Chishti. 2016. Path confidence based lookahead prefetching.

In proceedings of the 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). Taipei, Taiwan, 1–12.

[7] Sushant Kondguli and Michael Huang. 2018. Division of labor: a more effective

approach to prefetching. In proceedings of the ACM/IEEE 45th Annual Inter-
national Symposium on Computer Architecture (ISCA). Los Angeles, CA, USA,
83–95.

[8] Pierre Michaud. 2016. Best-offset hardware prefetching. In proceedings of the
IEEE International Symposium on High Performance Computer Architecture
(HPCA). Barcelona, Spain, 469–480.

[9] Qianfan. [n. d.] Rank of mobile games in China. https://zhishu.analysys.cn/pu

blic/view/wTopApp/wTopApp.html. Accessed Nov 4, 2021. ().

[10] Qimai. [n. d.] Rank of games in China. https://www.qimai.cn/rank/marketRan

k/market/3/category/154/date/2019-11-08. Accessed Nov 4, 2021. ().

[11] Joseph Rogers. 2019. Effects of an lstm composite prefetcher. (2019).

[12] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. Dramsim2: a cycle

accurate memory system simulator. IEEE computer architecture letters, 10, 1,
16–19.

[13] Subhash Sethumurugan, Jieming Yin, and John Sartori. 2021. Designing a cost-

effective cache replacement policy using machine learning. In proceedings of
the IEEE International Symposium on High-Performance Computer Architecture
(HPCA). Seoul, South Korea, 291–303. doi: 10.1109/HPCA51647.2021.00033.

[14] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilker-

son, Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex

address patterns. In proceedings of the Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). Waikiki, HI, USA, 141–152.

[15] Alan Jay Smith. 1982. Cache memories. ACM Computing Surveys (CSUR), 14, 3,
473–530.

[16] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and

Andreas Moshovos. 2006. Spatial memory streaming. ACM SIGARCH Computer
Architecture News, 34, 2, 252–263.

[17] Peter Van Vleet, Eric Anderson, Lindsay Brown, J-L Baer, and Anna Karlin. 1999.

Pursuing the performance potential of dynamic cache line sizes. In proceedings
of the IEEE International Conference on Computer Design: VLSI in Computers
and Processors. Lisbon, Portugal, 528–537.

[18] Zhenlin Wang, Doug Burger, Kathryn S McKinley, Steven K Reinhardt, and

Charles C Weems. [n. d.] Guided region prefetching: a cooperative hard-

ware/software approach. In proceedings of the Annual International Symposium
on Computer Architecture, 2003. Proceedings. San Diego, California, USA, 388–

398.

[19] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin.

2019. Efficient metadata management for irregular data prefetching. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1–13.

[20] Xiangyao Yu, Christopher J Hughes, Nadathur Satish, and Srinivas Devadas.

2015. Imp: indirect memory prefetcher. In proceedings of the 48th International
Symposium on Microarchitecture. Waikiki, HI, USA, 178–190.

6

https://zhishu.analysys.cn/public/view/wTopApp/wTopApp.html
https://zhishu.analysys.cn/public/view/wTopApp/wTopApp.html
https://www.qimai.cn/rank/marketRank/market/3/category/154/date/2019-11-08
https://www.qimai.cn/rank/marketRank/market/3/category/154/date/2019-11-08
https://doi.org/10.1109/HPCA51647.2021.00033

	Abstract
	1 Introduction
	2 The Skeleton of Planaria
	3 Intra-page Sub-prefetcher
	3.1 Observation of Intra-page Accessing Pattern
	3.2 Self-Learning Directed Prefetcher

	4 Inter-page Sub-prefetcher
	4.1 Observation of Inter-page Accessing Pattern
	4.2 Transfer-Learning Directed Prefetcher

	5 Evaluation methodology
	6 Results and Analysis
	7 Related work
	8 Conclusion

