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Abstract—Non-Volatile Memory (NVM) is better than tra-
ditional DRAM with respect to energy efficiency and larger
capacity, so NVM has begun to be used as main memory.
NVM provides data persistence that data written into NVM
will not be lost during unexpected system failure occurs. Data
persistence is mandatory for programs such as file system and
database. However, traditional memory protocol cannot provide
an mechanism for programs to guarantee data persistence
because the write instructions do not ensure that data would
be eventually written into the memory media. Furthermore,
extra global operations such as PCOMMIT for data committing
could incur significant performance loss, especially for multi-
task programs. To address this issue, we propose a hardware-
software coordinated mechanism to achieve low-overhead data
committing. Write queues in memory controller are divided into
multiple sub-queues for monitoring write commands for different
address ranges. Programs can query write queues to check the
execution status of previous written commands through a series
of OS-managed library APIs. Fine-grained data committing can
reduce the interferences among processes effectively. Extensive
evaluations show that per-task data committing brings an average
1.78x performance improvement than original global committing
mechanism and accelerates the data committing by 2.07 times.

Index Terms—Non-Volatile Memory, Persistent Memory, Data
Committing

I. INTRODUCTION

Big data era has made new on-line transaction processing

(OLTP) applications supporting increasingly more concurrent

users and data processing [1]–[4]. Database management sys-

tems (DBMSs) are critical applications among OLTP applica-

tions which are responsible for ensuring data persistence. Data

persistence means that updated data is written on non-volatile

devices thus prevents data loss after a power corruption.

As a traditional method to measure data persistence, DBMS

writes data to non-volatile storages periodically, like a SSD or

HDD. We can call it a synchronization point, when DBMS

program writes all its data which need persistence into non-

volatile storage. To ensure data persistence, program will block

all new data writes during a synchronization period. When

synchronization period finishes, all data written before it are

committed to non-volatile storage and program is permitted
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TABLE I
PERFORMANCE OF DIFFERENT NON-VOLATILE DEVICES

Write latency Access granularity
NVM (PCM) hundreds of nanoseconds 64B

SSD hundreds of microseconds 4KB
Disk tens of milliseconds 4KB

to issue new data writes. Data in non-volatile memory exist

even after power corruption and programs can restore their

data after system restarting.

Non-Volatile Memory (NVM) has been emerged as a new

main memory system, like PCM or RRAM [5]–[11]. Com-

pared to conventional DRAM main memory, NVM has higher

density and lower energy. Besides, NVM provides data persis-

tence which means data in NVM will not be loss after a power

fail [12]–[16]. Thus, NVM is able to replace the SSD or HDD

as the non-volatile device to achieve data persistence in DBMS

applications. Table I shows the performance parameters of

different non-volatile devices. In DBMS, one synchronization

period is needed each time data is modified. So the length

of synchronization period has a great influence on system

performance. Especially in multi-thread OLTP applications,

data update could be very frequent.

Although NVM provides a physical feature of data persis-

tence, current memory hierarchy does not support writing data

into main memory directly. This is due to complex memory

hierarchies including CPU caches [17], [18]. When applica-

tion issues memory write instructions, these instructions are

committed after data are written into L1 CPU cache, and all

cache replacement and eviction are done by hardware in the

background.

A feasible way to achieve data committing on memory is

using assembly instructions CLFLUSH and MFENCE. But

in complex memory hierarchy, CLFLUSH cannot ensure that

data will not be buffered in memory controller or other buffers

between CPU cache and memory chips. As a solution, PCOM-

MIT [19] has been proposed in Intel ISA to flush all data

from memory controller to memory chips. But PCOMMIT

will barrier all write commands issuing from all CPU cores.

We can call this mechanism global committing and it succeeds

providing a way to commit data to persistence, but it takes

coarse granularity and affects system performance.
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As an improved method, Intel has deprecated PCOMMIT

and presents Asynchronous DRAM refresh (ADR) technology

[20]. ADR technology can ensure that, all written data buffered

in memory controller is able to flushed into memory when a

power loss happens. Using ADR, PCOMMIT is not needed

because when data is flushed from cache into memory con-

troller, its data persistence can be ensured by ADR mechanism.

However, ADR is not supported by all CPU. Especially, NVM-

based main memory is probably configured as DRAM-NVM

hybrid memory and DRAM is used as L4 cache. In hybrid

memory case, ADR only flush data from memory controller

to off-chip DRAM cache which is not a non-volatile device.

This means that, ADR technology is not able to provide

data persistence in complex DRAM-NVM hybrid memory

situation.

In this paper, we propose a fine-grained memory committing

mechanism. In a hardware-software coordinated way, memory

committing only blocks write commands of partial address

space, especially does not affect other parallel-running threads.

Write queue in memory controller is separated into multiple

queues and each of them corresponds to a memory address

range. These ranges of address are defined by applications

using a specific API. Memory commands of different address

ranges are buffered in different corresponding queues. In mem-

ory committing period, write commands in different queues

are committed independently and will not affect commands in

other queues.

Our contribution of this paper is that, we propose an

effective persistence mechanism based on NVMM committing.

This mechanism uses separate memory write queues in mem-

ory controller to achieve fine-grained memory committing.

The fine-grained method reduces the time overhead of memory

committing process and avoids all running threads to be

paused in a committing period. The evaluations show that,

our fine-grained mechanism has a 1.78 times performance

improvement over traditional global committing mechanism.

The rest of paper is organized as: Section 2 introduces

the backgrounds of NVM and data committing. Section 3

introduces our proposed scheme. Section 4 shows evaluations

of different memory committing mechanisms. Finally, Section

5 concludes the whole paper.

II. BACKGROUNDS

In this section, we will introduce the background of data

persistence and data committing mechanism on memory in-

terface.

A. Data Persistence and NVM

DBMS applications constitute an important type of big data

applications. It provides an on-line data processing servicing

parallel users and threads. Furthermore, it demands data per-

sistence that data of database must not be lost. In modern

computer system, many volatile devices are used to improve

data access speed, like DRAM memory and SRAM cache.

During normal program running, updated data are only written

into volatile devices. To achieve data persistence, data of

Fig. 1. Memory interface of NVM and NVM controller

database must be written back to non-volatile devices. And

Non-Volatile Memory (NVM) provides a potential mechanism

that data in NVM is persistent without writing back to disk.

NVMs such as PCM are byte-addressable persistent devices

expected to be 100x faster (read-write performance) compared

to current SSDs. Also, NVM has a 2x-4x higher density than

DRAM because it can store multiple bits per cell, which

makes NVM a suitable candidate for replacing DRAM as

high-capacity memory. Non-volatile main memory (NVMM)

architecture is shown in Figure 1. NVM’s read latency is

comparable to DRAM latency, but the write latency is 5x-10x

slower. NVMM uses DDR-like memory protocol and NVM

controller is added at NVM’s side. NVM controller manages

all memory commands transferred from memory controller.

Considering the architecture of NVMM could be complex like

hybrid DRAM-NVM memory, NVM controller is necessary to

provide an unified interface to CPU side.

B. Memory Committing

In DBMS applications, data committing happens frequently

that most committing period could only have one or a few

writes. This makes data committing take a large proportion of

program running time. Usual data committing period is shown

in Figure 2a. Compared to traditional mechanism which write

data back to disk, writing data back to memory could bring a

great performance improvement.

Different with disk I/O operations, memory write instruction

will be finished right after data are written on cache instead

of main memory. Only when data is evicted from cache, a

main memory write command is issued. But data eviction

is controlled by hardware in the background. So if we use

non-volatile memory to replace non-volatile disk as the data

persistent devices, programs cannot simply use memory write

instructions to replace disk write instructions.

A feasible solution is using CLFLUSH and PCOMMIT in

data committing as shown in Figure 2b. CLFLUSH flushes ap-

pointed data out of cache. In this case, flushed data is buffered

in memory controller and forms a memory command in write

queue. PCOMMIT flushes all memory write commands out

of memory controller which means all corresponding data are

written into main memory. But PCOMMIT acts on memory

controller and it blocks all memory write commands from

issuing into memory controller. This means that, all other

running threads must stop data committing before current

committing period is finished. As data committing could be

very frequent in DBMS applications, this method could takes

a serious time overhead of memory committing.
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Fig. 2. Data committing of different non-volatile devices

Fig. 3. Design overview of Fine-grained Memory Committing

Another potential technology is ADR. ADR technology can

ensure that, all written data buffered in memory controller is

able to flushed into memory when a power loss happens. This

is achieved by that a battery is configured in memory controller

and it will satisfy the power of data flushing from memory

controller to main memory. Using ADR, data in memory

controller is regarded as persistent so that PCOMMIT is not

needed in memory committing period as shown in Figure 2c.

But ADR is not supported by all types of CPU and large

battery is not easy to achieve. Also, ADR is not suitable

to which NVM is combined with DRAM cache as hybrid

memory. Because DRAM cache is a large non-volatile L4

cache, battery is hardly large enough to flush all data in DRAM

cache into NVM.

III. FINE-GRAINED DATA COMMITTING

Based on our analysis and current works, we propose fine-

grained hardware-software coordinated memory committing.

In Section III-A, we will introduce our design ideas and in

Section III-B and III-C, hardware modification and software

library functions are detailed.

A. Design

The overview of fine-grained memory committing is shown

in Figure 3. Our first point is that write commands are buffered

in separate write queues in memory controller Thus at the time

of memory committing, only one write queue is needed to be

blocked. As each write queue corresponds different memory

space, only write commands of relative memory addresses are

blocked. The binding of memory spaces and write queues

are done by OS-managed APIs so that threads are able to

use different write queues to avoid interfere during memory

committing period.

Our second point is that memory controller communicates

with NVM controller actively so that status of write commands

Fig. 4. The structure of memory controller with separate write queues

in NVM controller can be tracked by memory controller.

Programs can also use specific address to check status recorded

in memory controller. Committing operations are started by

programs and managed by memory controller which flushes

write queues to NVM controllers and track the statuses.

B. Implementation:Hardware

As stated in Section II, CPU cores cannot track the execu-

tion state of write instructions, so we first separate write queue

in memory controller into several ones. The structure of new

write queues is shown in Figure 4. Write queues receives all

write commands issued from programs to memory controller.

And in queues, write instructions with specific addresses are

buffered in separated queues according to a registered address

space list. Each queue corresponds to a memory space and

the address ranges are appointed in address range registers

by OS. Write queues also keep persistence credit counters for

each queues to identify the execution state of write commands.

Every write commands occupies one persistence credit of

corresponding queue. When the credit value equals to its

maximum value, it identifies that all previous write instructions

are completed. Programs can query these credits to check the

statuses. Write commands of addresses other than registered

addresses will be buffered in another individual queue on

memory controller.

The persistence credit value is synchronized with media

controller of NVM. As memory module doesn’t have an active

mechanism to announce the credit value update to memory

controller in standard interface, the credit update is queried

by memory controller with a read command or returned with
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Fig. 5. Library functions for per-task committing

other read commands coded with returned data. For software

to access these credits, read commands to special addresses are

persistence query accesses. As response to these persistence

query accesses, memory controller will return the credit value

of corresponding queue and no longer transfer it to memory

chip as common read commands.

To support persistence credits, NVM controller should also

add a set of persistence credit registers and address range

registers. The extended NVM controller is similar to mem-

ory controller with additional address range registers and

persistence credit registers. In address range registers, NVM

controller keeps the same value with memory controller that

their values are synchronized immediately after they are set

in memory controller. As address ranges in memory con-

troller are written by specific write commands, those in NVM

controller are also written by same value. Persistence credit

registers are updated by NVM controller itself. When a write

command is issued, persistence credit decreases by 1. And

after it is finished, credit increases by 1. Newest persistence

credits change is synchronized back to memory controller. The

synchronization operations are issued by memory controller

that, when memory controller finds that a credit value is low,

it sends a specific read command. This read command to

specific address will be captured by NVM controller and the

credit update information will be encoded in returned data.

The interval of that memory controller requires for persistence

credit update could be dynamic. The more often it requires,

the more read commands are sent on memory bus. On the

contrary, new write commands could have to wait for credit

because the credit value is 0 in memory controller and the

update information has not arrived.

C. Implementation:Software

In this section, we will introduce the software management

of fine-grained committing. Figure 5 shows all OS-managed

library APIs of fine-grained committing. Function Persistence-

Malloc is used for programs to allocate a memory space and

bind it to a queue in write queue which shown in Figure 6.

The return value of PersistenceMalloc is the queue number

of write queues. When programs want to confirm the data

persistence, function PersistenceCommit would be executed

and data persistence is confirmed by credits. When programs

demand no data persistence, function PersistenceRelease can

unbind and release the memory space on write queues.

When program wants to monitor data persistence on a mem-

ory space, it can use PersistenceMalloc to allocate a memory

Fig. 6. Pseudo code of function PersistenceMalloc

Fig. 7. Pseudo code of function PersistentCommit

space and write its address range into address range register.

PersistenceMalloc is an OS-managed function like Malloc that

OS allocates a memory space and selects a write queue as the

register target. And then, the basic address and space size is

assigned into corresponding address range register. At last, the

queue number is return to program. This number will be used

in data committing period. In fact, multiple address ranges

can be bound to one queue. And OS can monitor the usage

of write queues to select the queue with the lowest utilization

for new binding address range. PersistenceRelease is reverse

operations of PersistenceMalloc that it releases the assigned

memory space.

After allocating a special memory space for data persistence,

all write commands to this space are tracked by corresponding

write queue so that programs could use the normal write

instructions to do write operations. Function PersistentCommit

is used for programs to confirm that all previous written data

have been written to persistent memory. Its pseudo code is

shown in Figure 7. When a data committing operation starts,

PersistentCommit will set a committing flag to indicate that

memory controller will reject all other write commands to

access this queue and send all buffered commands to memory

chip, otherwise the persistence credit will be taken again by

new write instructions which means that the credit value will

never reach maximum. At the same time, access to the same

queue from other threads should also be blocked. To multi-

thread programs, the queue will locked before PersistentCom-

mit is finished. Only when the persistence credit value reaches

maximum and the corresponding queue is empty, all previous

written data is assured to be persistent. After set committing

flag, the value of persistence credit register of corresponding

queue is queried repeatedly, until the credit value is the same

with the maximum credit limit, which means that all previous
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TABLE II
SYSTEM CONFIGURATIONS

ROB 2.7GHz, 256-entry, max fetch/retire per cycle: 4/2
L1 Cache Private, 32KB, 4-way, 64B-block, 4-cycle hit
L2 Cache Private, 256KB, 8-way, 64B-block, 10-cycle hit
L3 Cache Shared, 1MB/core, 16-way, 64B-block, 40-cycle hit

DRAM Parameters

Memory 2 64-bit Channels, 2 Ranks/Channel, 8 devices/Rank,
8 sub-ranks/rank, x8-width (1 device) sub-rank

PCM Parameters
Timing Read latency: 55ns, Write latency: 150ns

NVM controller Read queues: 64 entries
Write queue: 64 entries

write commands are all transferred into memory chips. At this

time, corresponding write queue is unlocked and new write

operations to corresponding queue are allowed to be issued.

Program will also receive the updated persistence credit and

finish PersistentCommit function.

IV. EVALUATIONS

A. Experimental methodology

We use a cycle-accurate simulator DRAMSim2 [21] driven

by Pin-generated trace for our evaluation [22]. The simulator is

extended to provide Re-order Buffer (ROB) module to manage

trace input and instruction pipeline. PCM timing is added

in DRAMSim2. Specifically, we modify the original DRAM

parameter to PCM parameter shown in Table II. Separate write

queues and NVM controller is also added in DRAMSim2. To

simulate persistence credit, we also add the credit mechanism

that each write commands with specific memory address will

take one credit, and memory controller will query updated

credit using read command when a credit value is 0. The

number of address range registers are 4 to each queue which

means that one queue is able to correspond to 4 address spaces

and each write queue has 8 queue entries. In experiment, we

run a same CPU cycles to global committing and fine-grained

committing and compare their performances.

We modify the original programs to add instructions for

confirming persistence and credit synchronization operations

are generated in simulator in need automatically. ROB is

deployed one for each core and we run our benchmark

programs in 16-core configuration. In workload, we use a

persistent memory (PM) benchmark suite called WHISPER

as the target programs [23]. WHISPER includes 11 programs

shown in Table III.

B. Performance results

Figure 8 shows the performance comparison of programs

using different persistence committing mechanisms. In all the

programs, the average ratio of read and write is 1.96:1. Fine-

grained committing shows an improvement of 1.78 times

over global committing due to that interference of threads

is low. In Figure 9, different execution times of committing

operations also shows that programs runs faster in fine-grained

commit because the time cost of single committing operation

is reduced by 60.4%.

TABLE III
WORKLOADS AND CONFIGURATIONS

Benchmark Configuration
Echo 4 clients, 1 million transactions

YCSB 4 clients, 8 million transactions
TPC-C 4 clients, 1 million transactions
Redis lru-test, 1 million keys
C-tree 4 clients, 100K INSERT transactions

Hashmap 4 clients, 100K INSERT transactions
Vacation 4 clients, 2 million transactions, 16 million tuples

Memcached memslap, 4 clients, 100K operations
NFS filebench, 8 clients
Exim postal, 8 clients

MySQL OLTP-complex, 4 clients

Fig. 8. Instructions Per Cycle (IPC) of Global and Fine-grained committing

Figure 10 shows the performance results of different data

committing frequency. If we reduce data committing frequency

that starts a data committing period after multiple data updates,

program will be less interrupted by committing periods. In

Figure 10, we find that in the case of data committing is

issued every 100 data updates, fine-grained committing has

a performance improvement of 6.0% but if data committing is

issued every update, the improvement may reach 100%.

We also simulate the credit synchronization overhead. In

fine-grained committing, each queue has its own persistence

credit. Global committing is considered as using one synchro-

Fig. 9. Time spending on single data committing period of Global and Fine-
grained committing
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Fig. 10. Average Instructions Per Cycle (IPC) of Global and Fine-grained
committing in different data committing frequency

Fig. 11. Synchronization times of persistence credits of Global and Fine-
grained committing

nization operation in one committing period. More credits take

more synchronization overhead. Figure 11 shows the extra

synchronization operations of different method. We can see

that fine-grained mechanism takes synchronization operations

2.4 times more than global committing on average.

V. CONCLUSIONS

Non-Volatile Memory is expected to become the mainstream

memory, with large capacity and low power consumption.

Also, new features of NVM are also worth exploring, espe-

cially the data persistence. But in traditional memory pro-

tocol, data persistence is not supported that programs are

hard to efficiently confirm persistence. Our proposed fine-

grained memory committing mechanism provides a hardware-

software coordinated way for programs to acknowledge the

status of previous write commands. With this mechanism,

write commands with registered addresses are monitored by

separate write queue and programs can use read instructions

to read the persistence credits. The time spending on data

committing operation is shorter because the data committing

period will not affect other commands issued by other threads.

Evaluations shows that, fine-grained committing improves the

system performance by 1.78 times compared with global

committing.
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