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Abstract—As an emerging technique, non-volatile memory
(NVM) provides valuable opportunities for boosting the memory
system, which is vital for the computing system performance.
However, one challenge preventing NVM from replacing DRAM
as the main memory is that NVM row activation’s latency is
much longer (by approximately 10x) than that of DRAM. To
address this issue, we present a collective cross-page prefetching
scheme that can accurately open an NVM row in advance and then
prefetch the data blocks from the opened row with low overhead.
We identify a memory access pattern (referred to as a ladder
stream) to facilitate prefetching that can cross page boundary,
and propose the ladder stream prefetcher (LSP) for NVM. In
LSP, two crucial components have been well designed. Collective
Prefetch Table is proposed to reduce the interference with demand
requests caused by prefetching through speculatively scheduling
the prefetching according to the states of the memory queue.
It is implemented with low overhead by using single entry to
track multiple prefetches. Memory Mapping Table is proposed
to accurately prefetch future pages by maintaining the mapping
between physical and virtual addresses. Experimental evaluations
show that LSP improves the memory system performance with no
prefetching by 66%, and the improvement over the state-of-the-art
prefetchers, Access Map Pattern Matching Prefetcher (AMPM),
Best-Offset Prefetcher (BOP) and Signature Path Prefetcher (SPP)
is 26.6%, 21.7% and 27.4%, respectively.

Index Terms—Prefetch, DRAM Cache, Non-volatile Memory

I. INTRODUCTION

To meet the increasing memory capacity requirements of
diverse data-intensive applications, Intel released a memory
product called the OptaneTM DC Persistent Memory Module
(Optane DC PMM) [1]. When it works in the memory mode,
DDR4 DIMM acts as the cache of NVM. For simplicity,
the hybrid memory structure is referred to as the external
DRAM cache and non-volatile main memory (EDC-NVMM)
in this paper. EDC-NVMM combines the advantages of both
DRAM (low latency) and NVM (large capacity), providing
large capacity with short access latency.

However, EDC-NVMM faces a performance issue when
serving data-intensive applications [1] due to two factors: (1)
NVMM has low row buffer locality. An evaluation [2] has
shown that the row buffer hit rate of NVMM is less than 50%.
(2) The overhead of an NVM row buffer miss is much higher
than that of DRAM since the latency of NVM activation (i.e.,
the delay in transferring data from the memory module to the
row buffer) is approximately 10x that of DRAM activation [3].

Prefetching technique has the potential to address this is-
sue by opening future pages and obtain the data blocks in
advance. We refer to this as cross-page prefetching. To adapt

to the characteristics of EDC-NVMM, the design of cross-page
prefetching must consider the following three requirements.

First, cross-page prefetching requires exploiting long-term
future patterns. Existing prefetchers often avoid late prefetching
through enlarging the prefetch distance or depth [6]–[9]. Due
to NVM’s long access latency, the prefetch distance for NVM
needs to be longer than that for DRAM. Therefore, cross-page
prefetching for EDC-NVMM needs to exploit patterns that can
hold over a more long-term future. However, most existing
prefetchers [6]–[9] designed for DRAM main memory rarely
utilize the patterns that cross page boundary, so the effect of
reducing late prefetching for NVM is limited.

Second, cross-page prefetching requires trading wasteful
prefetching for high coverage and fewer row activations. Once
a page is opened, the blocks that may be accessed on the
page in the future should be prefetched as many as possible,
avoiding open the page again when the missed data block is
accessed in the future. However, previous work [10] has shown
that the access locality in low level of a memory hierarchy
has been weakened by out-of-order, high-parallel execution.
Such irregularity of access patterns is prone to incur waste
prefetching. To avoid wasteful prefetching, prefetchers often
deliberately reduce their prefetching coverage [6].

Third, cross-page prefetching requires accurate prediction of
future physical pages. However, it is not easy since hardware
prefetchers located in the low-level of a memory hierarchy lack
the mapping between virtual and physical addresses [6]. A
previous evaluation [4] found that in real applications, more
than 50% of consecutive virtual pages map to non-consecutive
physical pages. The interrupted mapping hurts the prefetch
accuracy of cross-page prefetching. Transparent huge page is a
practical approach to avoid the interrupted mapping. However,
it is not ideal and often disabled in many large memory
applications due to the memory fragmentation problem [5].

The goal of this study is to design a prefetcher that can
satisfy the above three requirements. First, we analyzed the
long-term access patterns of many data-intensive applications
and found a memory pattern from two aspects: (1) Inter-
page accesses often have a constant stride; (2) Most intra-page
accesses are relatively concentrated of consecutive data blocks.
In this paper, this pattern is referred to as “ladder stream”, and
these consecutive intra-page blocks is “rung”.

Using the ladder stream pattern, LSP can solve the first two
issues discussed above as long as it can predict the rungs in far
future pages. For a rung whose length is K blocks, LSP can



aggressively issue K consecutive requests even if the accesses
are out-of-order or interrupted. Note that these intra-page
prefetching do not incur new activations. Thus the overhead of
incorrect intra-page prefetching is low. LSP can also solve the
third problem by safely trading wasteful prefetching for high
coverage and fewer row activations. However, issuing many
requests would occupy the limited memory queue entries and
significantly interfere with demand requests.

To reduce the interference, we propose a structure called
Collective Prefetch Table (CPT). Prefetch requests do not di-
rectly enter into the request queue but are temporarily stored in
CPT. CPT speculatively schedules these requests according to
the states of the memory queue, thereby reducing interference.
To temporarily store as many requests as possible, CPT uses
single entry to track multiple prefetches for a rung. It only
records the starting address and length of a rung. Thus it can
temporarily store a large number of prefetches with limited
hardware resources.

To improve cross-page predicting accuracy, we propose a
structure called memory mapping table (MMT) to maintain the
mapping between the virtual and physical memory addresses.
The large capacity of the external DRAM cache makes it
achievable to store this mapping in external DRAM.

In this study, we make the following contributions:

Ê We explore the necessity of cross-page prefetching for NVM.
It requires exploiting long-term future patterns, high cover-
age, and accurately predicting future pages since the overhead
of NVM row activation is significant.

Ë We find that the ladder stream pattern, which facilitates the
cross-page prefetching for NVM, widely exists in diverse ap-
plications. In addition, we propose the structure and method
to identify the ladder streams.

Ì Utilizing the ladder stream pattern, we build ladder
stream prefetcher (LSP), which performs accurate inter-page
prefetching and aggressive intra-page prefetching simultane-
ously. For inter-page accesses, LSP predicts future pages over
the long-term using the regular strides between the rungs of
ladder streams. For intra-page accesses, LSP trades wasteful
prefetching for high coverage and fewer row activations by
roughly fetching the future rungs.

Í We propose two structural optimizations for LSP. CPT re-
duces the interference with demand requests by speculatively
scheduling the prefetch requests according to the state of
memory queue. Moreover, CPT saves the hardware resources
by tracking multiple prefetches for a rung using a single
entry. MMT helps LSP to work in virtual space and improves
the accuracy of inter-page prefetching. MMT consumes 3.4%
of the DRAM storage and incurs less than 0.9% performance
overhead. Extensive evaluations show that, LSP improves the
memory system performance by 66%, while the state-of-the-
art prefetchers, AMPM [11], BOP [7], and SPP [7] achieve
improvement by 26.6%, 21.7%, and 27.4%, respectively.

The rest of this paper is organized as follows. §II discusses
the background and motivations. §III introduces the details
of LSP. §IV presents the experimental evaluation of LSP. We
discuss related work in §V and conclude in §VI.
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II. BACKGROUND AND MOTIVATION

A. Architecture of EDC-NVMM
Figure 1 shows a schematic of the EDC-NVMM architecture.

Both the NVM and DRAM are accessed via traditional memory
buses and managed by memory controller hardware. Each
DRAM or NVM bank comprises rows and columns of memory
cells. Each bank has a row buffer to cache the most recently
accessed data in the bank. Each access to a given bank needs
to read/write data from/to the row buffer.

The latency of an NVM row buffer read (i.e., transferring
data from row buffer to data bus) is similar to that of DRAM.
However, the operations of NVM precharge and activate (i.e.,
transferring data between row buffer and memory cells in
banks) are much slower than those of DRAM. A typical
configuration [3] shows that NVM’s tRCD is approximately
10x that of DRAM. As a result, NVM’s read performance is
significantly lower than that of DRAM when the row buffer
miss rate is high.

B. Ladder Stream Pattern
Figure 2 is a sketch diagram of ladder stream pattern. It

shows the access bitmaps of three pages, each bit of which
illustrates whether the relevant block has been accessed (i.e.,
“1” indicates that it has been accessed, “0” indicates that it
has not been accessed). Intra-page accesses are concentrated
into a red area and the red areas have a stable distance. We
define “Ladder Stream” as a memory flow that includes both
intra-page accesses and inter-page accesses. The intra-page
accesses are roughly concentrated into a series of approximately
consecutive blocks. They form a pattern that looks similar to
the rungs of a ladder. Besides, the inter-page accesses have
a constant stride, meaning that the distance between the start
addresses of rungs on the same ladder is fixed and quite stable.

Many applications have ladder stream pattern due to their
algorithm logic and data structure. For instance, an analysis [12]
has shown that in graph processing workload, the accesses to
the vertex array may give rise to a ladder stream. In addition, in
real applications, the distance between rungs may not be stable
as ideal, but we find that the distance between the pages where
the rungs are located is often stable.

The ladder stream pattern facilitates cross-page prefetching
of EDC-NVMM from two perspectives: (1) Ladder streams pro-
vide easily predicted inter-page patterns in long-term future. (2)
Intra-page prefetching for rungs only needs to roughly predict
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Fig. 3. Design of Ladder Stream Prefetcher.
a series of consecutive blocks, and the overhead of incorrect
intra-page prediction is relatively low without incurring new
row activations.

III. LADDER STREAM PREFETCHER

We propose LSP in the memory controller. LSP tracks the
memory requests arriving from LLC to the memory controller,
identifies the ladder streams and issues prefetches into the
memory request queue. The structure and execution are shown
in Figure 3. When a memory access arrives, LSP first checks
whether it belongs to an existing ladder stream. If it does,
LSP merges it into this ladder stream (step 1); otherwise, LSP
inserts it into the rung table (RT) and identify the accesses that
can form the rungs (step 2). LSP then merges the identified
rung into the ladder stream table (LST), predicts the future
rungs in the ladder stream and inserts them into the CPT (step
3). According to the state of the memory request queue, CPT
speculatively issues and tracks the prefetch requests (step 4).
Besides, step 3 and 4 involve the address translation between
virtual addresses and physical addresses using MMT. We
describe this detailed process in §III-D.

A. Rung Identification
LSP identifies rungs using RT. Each RT entry tracks the his-

torical accesses to a physical page. “Page” is the physical page
number. “Start” and “End” are the minimum and maximum
block numbers accessed in this physical page, respectively.
“Count” records the number of accesses to this page. RT entries
are replaced according to LRU policy.

A set of intra-page accesses forms a rung in a ladder stream
when access count is no less than half the rung length. It means
that the accesses are concentrated into the continuous blocks.
Unlike other prefetchers that learn intra-page access patterns,
such as Stream Buffer Prefetcher (SBP) [13] and AMPM [11],
LSP ignores the access order and therefore can tolerate the
intricate patterns caused by out-of-order or interrupted accesses.
In the example shown in Figure 3, when an access request for
the 11th block in page C (denoted by C[11]) enters, it hits in
an RT entry and the count turn to be 4. The length is 8, and
the access count is equal to length/2; thus, the rung C[4, 11]
is identified. After address translation, the rung {Start: 260,
Length: 8, Page: C} is merged into LST.

B. Rung Merging
LSP merges the rungs within a fixed address area into a

ladder stream using LST. Each LST entry represents a ladder
stream until the entry is evicted following the LRU policy.
“Start” is the minimum block address of the ladder stream
in virtual space. “Strides” represents the numbers of blocks

A i

Latency
Reduction

Latency
Addition

No
Prefetch

LSP

Collective
LSP

C k A i+1
B j D h B j+1

A i i+1 C k
B j j+1 D h

B j j+1
A i i+1 C k

D h

Activate row A i Demand Read the i-th block

Bank0
Bank1

Bank0
Bank1

Bank0
Bank1

A[i] B[j] C[k] D[h] A[i+1]B[j+1]

A[i] A[i+1] A[i+1] B[j] B[j+1] C[k] D[h]

A[i] B[j�

A[i] A[i] enters memory queue
A

A[i+1]B[j+1� C[k] D[h�
A[i+1],1,1 B[j+1],1,1 A[i+1],0,1 B[j+1],0,1

A[i],0,1 CPT entry, A[i+1] is issued and not completed
i Prefetch the i-th block

X X

Fig. 4. The latency addition of aggressive intra-page prefetching, latency
reduction of collective prefetch and states of the memory queue. A[i] represents
the i-th block on Rowa.

between the rungs in this ladder stream. “Pages” is the array
of physical page numbers where the rungs are located. “Length”
represents the maximum rung length.

When the difference between the starting address of a rung
and the starting address of a ladder stream is less than some
value (denoted by INTER), LSP identifies that rung as belong-
ing to that ladder stream. LSP then calculates and inserts the
new stride. If “Strides” is full, LSP calculates the stride values’
distribution and determines this ladder stream’s dominant stride
value. Besides, LSP attempts to find the stable distance between
the pages where the rungs are located if there is no dominant
stride.

As shown in Figure 3, the page size is 4KB and the block
size is 64B, the address mapping between physical and virtual
is recorded in MMT. When the new rung C[4, 11] arrives, it
hits in LST entry, and the new stride value is 80. The stride
array is full, and the stable stride value is 80, so a ladder stream
is identified. The starting block addresses of rungs in the virtual
address space are “100, 180, 260”. In physical address space,
the rungs are “A[36, 43], B[52, 59], C[4, 11]”. The rung length
of this ladder stream is 8. Therefore, the i-th future rung is
predicted to be 260+i×80. The first future rung, D[20, 27], is
a candidate for collective prefetch.

LSP dynamically adjusts the value of INTER. The higher
the value of INTER is, the more likely it is that a series of
rungs will be merged into a ladder stream. It can affect the
prefetch accuracy and aggressiveness. Initially, LSP detects
many values, obtains the prefetch accuracy under different
parameters, and adopts the parameter that can provide the
highest accuracy. Then, the prefetch accuracy is monitored.
If the prefetch accuracy sharply drops (to less than half of
the initial accuracy), the parameter detection mechanism is
triggered again.

C. Collective Prefetching Table
Figure 4 illustrates the inference with demand requests

caused by aggressive intra-page prefetching and the latency
reduction of collective prefetching. Suppose that there are four
NVM memory rows in two banks: Rowa and Rowc are in
Bank0, Rowb and Rowd are in Bank1. Bank0 and Bank1 share
a request queue with a capacity of 2. It means that only up to
two accesses can be outstanding at a time. The original block
addresses of the memory requests are A[i], B[j], C[k], D[h],
A[i+1], B[j+1].

In the case of no prefetching, each bank has three activations.
In the case of LSP without collective prefetching, A[i+1]



and B[j+1] is prefetched and the sequence turns to be A[i],
A[i+1], B[j], B[j+1], C[k], D[h]. Note that A[i+1] prevents B[j]
from entering the memory queue and B[j] prevents C[k] from
entering the memory queue. As a result, the overall latency
is even longer than that of no prefetching, although LSP can
eliminate two row activations.

In collective LSP, the prefetch requests do not directly enter
the request queue but are temporarily stored in CPT. CPT
speculatively issues them when the number of free memory
queue entries is more than or equal to the number of banks. It
ensures that the prefetch requests will not block the requests of
each bank. To reduce CPT’s storage overhead, we assemble the
states of multiple prefetch requests for a rung into one entry.
As shown in Figure 4, the delay for the waiting memory queue
can be eliminated accordingly.

As shown in Figure 3, “Start” represents the starting address
of collective prefetch. “To be Issued” is a bit map, each bit of
which indicates whether the request of the related data block
needs to be issued. “To be Completed” is a bitmap, each bit of
which indicates whether the relevant data block has not been
fetched. In Figure 3, the requests for D[20,22] have been issued,
and the requests for D[20,21] have been completed. When the
bitmaps are zero, this means the prefetching of this rung has
been issued and completed. The CPT entry is then free.

D. Memory Mapping Table

LSP maintains most mapping relations between virtual and
physical addresses in two tables, including physical-to-virtual
table (PVT) and virtual-to-physical table (VPT). In rung merg-
ing, LSP lookups PVT to find the virtual address of “Start” of
the identified rung. If the “Strides” is full, LSP predicts future
rungs via virtual addresses, then uses VPT to generate the real
prefetch request by the physical address.

PVT is indexed by Physical Page Number (PPN) and trans-
lates the physical address to the virtual one. VPT is indexed by
Virtual Page Number (VPN) and translates the virtual address
to the physical one. We modify the page fault process in the
operating system (OS). When a page fault occurs and a new
mapping between physical and virtual pages is created, OS
writes this mapping into MMT. Memory controller identifies
the memory access by address. As shown in Figure 3, if the
access is to the grey area in DRAM, MMT will be accessed.
Otherwise, the access enters DRAM or NVM as usual.

Suppose that the size of NVM is 256GB and the page size
is 4KB, meaning that the main memory contains 64M physical
pages. For x64 architecture, one VPN requires 36 bits, so PVT
needs 288MB (i.e., 64M×36 bits). As for VPT, the completed
storage overhead is 208GB (i.e., 236 × 26 bits). Completely
recording VPT in DRAM is unrealistic. Besides, the case of
multiple processes sharing memory needs to be considered.
We use a simple hash function to convert process id and
the VPN to an index that has 28 bits, so the hashed VPT
requires 832MB (i.e., 228×26 bits). We have evaluated that the
accuracy of hashed VPT is close to that of complete VPT. For
a typical EDC-NVMM configuration, the capacity of DRAM
cache is 32GB. Therefore, MMT occupies approximately 3.4%

of DRAM capacity. Regarding the performance overhead, each
lookup of MMT requires one DRAM access.

The overhead of MMT is tolerable since DRAM cache has
a large capacity. As future work, we can resort to multi-level
MMT to reduce the storage overhead, at the cost of adding more
external DRAM accesses. We would not discuss this case in
this paper.

IV. EXPERIMENTAL EVALUATIONS

In this section, we represent evaluations for the proposed
LSP. First, we describe the methodology, including the selection
of workloads and competitors. Second, we present the results
and analysis in terms of several metrics, including accuracy,
timeliness, bandwidth utilization and energy consumption.

A. Methodology
1) Simulation: Considering the speed and accuracy of sim-

ulation, we use a trace-driven simulator called NVMain [14],
which simulates a memory system by taking the memory access
traces as inputs. We use the model presented in [12] to evaluate
the energy consumption of DRAM and NVM. The default
configurations are shown in Table I. We run the workloads on
an Intel Xeon E5 server with 32GB per memory channel. To
simulate the multi-thread or multi-process execution, we run
the workloads in 24 threads/processes, which is the same as
the number of CPU cores of the server. We collect memory
access traces using a well-known hardware memory tracing
tool, HMTT [15], which has been strictly verified and widely
used.

TABLE I
Configurations For NVMain DRAM Cache NVMM
Capacity 4GB 32GB
Structure 1 channel,8 banks 1 channel,8 banks
Row Size 2KB 2KB
Bus Frequency 64-bit, 1600MT/s 64-bit, 800MT/s
Request queue entry counts 128 128
Array read(write) 1.17(0.39) pJ/bit 2.47(16.82) pJ/bit
Row buffer read(write) 0.93(1.02)pJ/bit 0.93(1.02)pJ/bit
tRCD-tRP-tBURST-tRTP-tCCD 9-9-4-3-2 90-270-4-3-2

2) Workloads: Table II shows the workloads. We consider
typical HPC and big-data applications and we configure the
running memory (footprint) of workloads to almost occupy the
entire main memory of the host server. For SPECCPU2006, we
mix six memory-intensive workloads (400, 429, 440, 457, 463
and 470).

TABLE II
Workloads Description Abbr.
GraphX(BFS,CC,PR,LP,TC) [12] Graph Analysis W1-W5
K-Means [16] Clustering Algorithm W6
Bayes [16] Sort W7
Mixed SPECCPU2006 [17] High Performance W8
Terasort [16] Sort Algorithm W9
SPECJbb2005 [18] Java Virtual Machine W10
SOAPdenovo2 [19] Oligonucleotide Analysis W11
High Performance Linpack [20] High Performance W12
NPB(CG,FT,LU,MG,SP) [21] High Performance W13-W17

3) Competitor: As competitors, we select four prefetchers
that do not require program counter (PC) information-namely,
SBP [13], AMPM [11], SPP [6], and BOP [7]. The baseline
is a no-prefetching system. All the implementations of these
competitors are from DPC2 [22]. Table III shows their on-chip
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storage overheads. Note that since MMT is stored in external
DRAM, it does not take up LSP’s on-chip storage overhead.

TABLE III
Prefetcher Overheads of the components Overall Storage

SBP 64b×64. 512B
Tag (52b), Prefetch map (64b),

AMPM access map (64b), LRU (8b), 5.88KB
Entry Count (256).
Signature Table (43b×1024),

SPP Pattern Table (48b×16384), 101.9KB
Prefetch Filter (8b×512).

BOP Scores (255b), Throttle (42b), 97B
Delay Queue (473b).
RT ((26+6+6+4+6)b×64),

LSP LST ((48+10×5+26×6+6+6)b×64), 32KB
CPT ((32+32+32)×128).

B. Results
1) Performance: We represent the memory system perfor-

mance using the inverse of completion time in NVMain. Figure
5 shows the normalized memory system performance versus the
baseline. On average, LSP achieves a speedup of 66%, while
the speedups of SPP and AMPM are 27.4% and 26.6%, respec-
tively. In particular, LSP achieves a significant improvement for
ladder stream abundant workloads. For instance, LSP achieves
a 95% greater speedup than SPP on NPB-MG. However, LSP
has a limited effect when the workload lacks ladder stream
patterns. For example, on SPEC-MIX, the speedup of LSP is
lower than that of AMPM by 7.8%.

Moreover, when MMT and CPT are off, LSP has little
speedup. Using virtual addresses without collective prefetching
(i.e., MMT is on and CPT is off) can improve the performance
by 12.4% on average. As discussed in §II, prefetch requests
occupy hardware resources, such as memory queue entries;
consequently, an excessive number of prefetch requests may
result in performance loss. Therefore, when collective prefetch
is included (i.e., MMT and CPT are on), the performance of
LSP is significantly improved, by 48% on average. Moreover,
on average, the accesses of MMT incur a performance overhead
of 0.86%.

2) Coverage, Accuracy and Timeliness: We analyze the
prefetching using three metrics: useful ratio, late ratio and
useless ratio. The useful ratio is the proportion of blocks loaded
into the cache before their first demand access. The late ratio is
the proportion of blocks to which access is demanded before the
corresponding prefetch requests have been satisfied. It reflects
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the timeliness of prefetching. The useless ratio is the proportion
of prefetched blocks that are not required by demand accesses.
Moreover, we split the useless ratio into inter-page and intra-
page ratios.

Figure 6 shows the results in terms of these metrics. The
result of each workload contains five bars, indicating the
prefetchers SBP, AMPM, BOP, SPP and LSP. The accuracies
are 24.4%, 21.5%, 22.9% and 20.5%, respectively. Besides,
LSP shows the lowest late ratio since LSP performs inter-page
prefetching utilizing the ladder stream in the long-term future.
As a result of aggressive intra-page prefetching, LSP shows the
highest over-prefetching. On average, its useless ratio is 39%
higher than that of SPP. Fortunately, its useless inter-page ratio
is lower than AMPM, BOP, SPP. As shown in Table I, for row
buffer hits, the read latency of the NVM is similar to that of
DRAM. Thus, the overhead of useless intra-page prefetching is
small, allowing LSP to achieve the highest speedup eventually.

3) Bandwidth Utilization: Figure 7 show the normalized
DRAM and NVM bandwidth utilization of different prefetchers
versus the baseline. The DRAM bandwidth represents the
amount of data transferred from the NVM row buffer to the
DDR bus. The NVM bandwidth represents the amount of data
transferred from the NVM module to the NVM row buffer.

On the one hand, LSP utilizes more DRAM bandwidth
due to its aggressive intra-page prefetching. On average, LSP
consumes more DRAM bandwidth than SBP, AMPM, BOP
and SPP by 36.7%, 35.6%, 29.2% and 30%, respectively. On
the other hand, LSP reduces the NVM bandwidth utilization by
61.2% due to the accurate inter-page prefetching and aggressive
intra-page prefetching. Specifically, LSP requires 21%, 20.2%,
and 18.5% fewer NVM row activations than AMPM, BOP and
SPP, respectively. As discussed in §I, the most critical challenge
in EDC-NVMM is to hide or reduce the number of NVM
row activations. Therefore, LSP can significantly improve the
overall performance at the expense of occupying more DRAM
bandwidth.

4) Energy Consumption: Figure 8 shows the results for the
normalized dynamic energy cost versus the baseline. The result



of each workload contains six bars, indicating the prefetchers
No-Prefetching, SBP, AMPM, BOP, SPP and LSP. On average,
LSP consumes more DRAM energy than SBP, AMPM, BOP
and SPP by 1.4%, 3%, 2% and 2.6%, respectively and con-
sumes less NVM energy than SBP, AMPM, BOP, and SPP by
5%, 2%, 0.6%, 2.1% and 0.9%, respectively. Besides, due to
aggressive intra-page prefetching, LSP consumes less energy of
activation and precharge with more energy of burst. LSP saves
the normalized energy versus the baseline by 3.6%, while the
saved energy of SBP, AMPM, BOP, and SPP is 3.3%, 6%, 3.6%
and 5.2%, respectively.

V. RELATED WORK

Existing hardware prefetchers often exploit memory patterns
classified in terms of the physical page number or PC informa-
tion. However, the PC information is lost in LLC or lower-level
caches. Thus, some prefetchers, such as the spatial memory
streaming prefetcher (SMS) [23], may lose their effectiveness
without PC information since SMS requires the PC as the index
of accessing the memory pattern table. To extend SMS to cross-
page prefetching of EDC-NVMM, we have tried replacing PC
value with the physical page number. The results show that this
modification of SMS has little effect.

SBP [13] and its enhanced variants [8], [9] detect the stream
within a page. They adjust the prefetch distance and the degree
following prefetch feedback. AMPM [11] uses a bitmap to track
the accesses in some fixed area and issues prefetch requests
following the learned historical pattern. Thus, it can make
accurate predictions for complex patterns. The effectiveness
of SBP or AMPM for EDC-NVMM is limited since the
mapping between physical and virtual addresses is often non-
continuous. SPP [6] tracks the signature of each memory page
and records a count for each signature. When the count for a
particular signature is sufficiently high, prefetching is triggered.
It supports cross-page accesses by recording delta patterns that
cross page boundaries. The effectiveness of SPP is limited for
two reasons: (1) The complex intra-pattern makes it difficult to
find stable signature; (2) Large amount of memory pages makes
it difficult to predict future pages due to the limited capacity
for recording delta patterns. BOP [7] improves the timeliness
of the sandbox prefetcher [24]. It tests various offsets and
finds the best offsets following prefetching feedback. However,
it considers the potential offsets within the physical page so
it only needs to evaluate 63 values. When it is extended to
cross-page prefetching, the potential offsets will be much more.
Therefore, identifying a suitable offset from so many offsets is
difficult.

VI. CONCLUSION

In this paper, we propose collective cross-page prefetching
to address the issue incurred by the long latency of NVM row
activations. We found that the ladder stream pattern widely exist
and can facilitate the NVM-friendly prefetching. Utilizing the
ladder stream pattern, we propose LSP to perform accurate
inter-page prefetching and aggressive intra-page prefetching
simultaneously. For inter-page prefetching, LSP directly uses
virtual addresses to identify the strides of inter-page accesses

using a light-weight structure (i.e., MMT), which significantly
increases the accuracy of inter-page prefetching. For intra-
page prefetching, LSP aggregates multiple sequential intra-page
prefetches into a single collective prefetch, thereby reducing
interference with demand requests and saving hardware re-
sources. LSP improves memory system performance in terms
of execution time by 66%, while the improvement of SBP,
AMPM, SPP and BOP is 21.4%, 26.6%, 27.4%, and 21.7%,
respectively. Moreover, LSP saves the normalized energy versus
the baseline by 3.6%, while the saved energy of SBP, AMPM,
BOP, and SPP is 3.3%, 6%, 3.6% and 5.2%, respectively.
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