
732 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Suppressing the Interference Within a Datacenter:
Theorems, Metric and Strategy

Yuhang Liu , Member, IEEE, Xin Deng , Student Member, IEEE, Jiapeng Zhou , Student Member, IEEE,
Mingyu Chen , Member, IEEE, and Yungang Bao , Member, IEEE

Abstract—As the paradigm of cloud computing, a datacenter
accommodates many co-running applications sharing system re-
sources. Although highly concurrent applications improve resource
utilization, the resulting resource contention can increase the uncer-
tainty of quality of services (QoS). Previous studies have shown that
achieving high resource utilization and high QoS simultaneously
is challenging. Moreover, quantifying the intensity of interference
across multiple concurrent applications in a datacenter, where
applications can be either latency-critical (LC) or best-effort (BE),
poses a significant challenge. To address these issues, we propose
Ah-Q, which comprises two theorems, a metric, and a scheduling
strategy. First, we present the necessary and sufficient conditions
to precisely test whether a datacenter is both QoS guaranteed
and high-throughput. We also present a theorem that reveals the
relationship between tail latency and throughput. Our theoretical
results are insightful and useful for building datacenters that have
desirable performance. Second, we propose the “System Entropy”
(ES) to quantitatively measure the interference within a datacenter.
Interference arises due to resource scarcity or irrational schedul-
ing, and effective scheduling can alleviate resource scarcity. To
assess the effectiveness of a resource scheduling strategy, we intro-
duce the concept of “resource equivalence”. We evaluate various
resource scheduling strategies to demonstrate the correctness and
effectiveness of the proposed theory. Third, we introduce a new re-
source scheduling strategy, ARQ, that leverages both isolation and
sharing of resources. Our evaluations show that ARQ significantly
outperforms state-of-the-art strategies PARTIES and CLITE in
reducing the tail latency of LC applications and increasing the IPC
of BE applications.

Index Terms—Datacenter, high-throughput, performance
uncertainty, quality of services (QoS), resource contention.

I. INTRODUCTION

THE capabilities of computers have been formally examined
in multiple instances. Alan Turing developed an abstract

machine (often referred to as the Turing machine) to prove that

Manuscript received 25 April 2023; revised 27 December 2023; accepted 2
January 2024. Date of publication 16 January 2024; date of current version 18
March 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2023YFB4503904 and Grant
2016YFB1000201, and in part by the Innovation Funding of ICT, CAS under
Grant E361100. Recommended for acceptance by R. Prodan. (Corresponding
author: Yuhang Liu.)

The authors are with the University of Chinese Academy of Sci-
ences, Beijing 100190, China, and also with the Institute of Comput-
ing Technology, Chinese Academy of Sciences, Beijing 100045, China (e-
mail: liuyuhang@ict.ac.cn; dengxin19g@ict.ac.cn; zhoujiapeng22s@ict.ac.cn;
cmy@ict.ac.cn; baoyg@ict.ac.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPDS.2024.3354418, provided by the authors.

Digital Object Identifier 10.1109/TPDS.2024.3354418

not all definable problems are computable [56]. While this was
a negative conclusion, it opened the door to research on the
capabilities of computers. Popek and Goldberg [45] presented
the formal requirements for virtualizable third-generation archi-
tectures, which derived precise conditions to test whether a given
architecture can support virtual machines. Another example is
the CAP theorem proposed by Brewer [10], [22], which states
that a distributed database system running on a cluster can only
support two out of three properties: Consistency, Availability,
and Partition tolerance. This theorem has had a widespread
impact on the design of modern distributed systems.

These examples present instructive assertions about different
abilities of computers and inspire us to explore a new capability
for simultaneously ensuring high quality of service (QoS) and
high throughput. In this study, for latency-critical applications,
“throughput” is defined as the number of responses completed
by a datacenter per second, with each response corresponding to
a request. For best-efforts applications, “throughput” is defined
as the number of instructions executed per second. Given the
widespread deployment of cloud computing, it becomes crucial
to construct datacenters capable of ensuring QoS and achieving
high throughput, effectively addressing the performance uncer-
tainties associated with cloud computing.

Cloud computing relies on the shared use of a datacenter
by multiple concurrent applications to optimize resource uti-
lization. However, this high concurrency can lead to resource
contention and degraded user experience [15], [16], [25], [37],
[38], [58], [67], [68], making it challenging to achieve both high
throughput and user satisfaction. Interference within the data-
center must be carefully monitored, quantified, and addressed.
While our conference paper [32] has conducted preliminary
research on the measure and suppression of interference in
datacenters, the underlying general principles have not been
provided.

In our study, we present a theoretical framework for design-
ing a datacenter that can meet the user experience in highly
concurrent scenarios while considering the different criticalities
of user requests. It is common for concurrent applications to
have diverse resource requirements and different levels of crit-
icality. Additionally, users associated with these applications
often have varying requirements for tail latency. Therefore, the
user experience of a application in a datacenter is influenced
by three factors: the user’s tail latency requirements, the ideal
tail latency in the absence of interference, and the interference
caused by co-running applications.

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5784-3581
https://orcid.org/0009-0002-0747-421X
https://orcid.org/0009-0001-8453-4522
https://orcid.org/0000-0003-4469-1037
https://orcid.org/0000-0001-6565-5276
mailto:liuyuhang@ict.ac.cn
mailto:dengxin19g@ict.ac.cn
mailto:zhoujiapeng22s@ict.ac.cn
mailto:cmy@ict.ac.cn
mailto:baoyg@ict.ac.cn
https://doi.org/10.1109/TPDS.2024.3354418

LIU et al.: SUPPRESSING THE INTERFERENCE WITHIN A DATACENTER: THEOREMS, METRIC AND STRATEGY 733

Previous research has acknowledged the importance of
QoS [47], [66]. However, several key issues have yet to be
analytically addressed, including: (1) the conditions necessary
for a datacenter to achieve high-throughput, (2) the relationship
between tail latency and throughput, and (3) the scalability of a
datacenter.

The presence of two types of applications is typical in a
datacenter, namely the latency-critical (LC) applications and the
best-effort (BE) applications. LC applications, such as Redis [3]
and Moses [29], prioritize user experience and are susceptible to
tail latency and user expectation. On the other hand, BE applica-
tions, like Spark [65] and Fluidanimate [8], are concerned with
performance and are measured based on instructions-per-cycle
(IPC).

In the pursuit of resource efficiency in a datacenter, it is
common practice to simultaneously run multiple applications
on the same node. However, this can result in contention for the
shared hardware resources, leading to a negative impact on the
performance of the applications [11], [12], [15], [25], [37], [50],
[61], [63], [64]. The impact of contention can be particularly
severe for LC applications since tail latency can significantly
affect user experience. Although the effects of interference on
BE applications may not be as fatal, minimizing the drop in
IPC is still crucial to maintain a satisfactory user experience.
Therefore, it is important to consider the relative importance (RI)
between LC and BE applications when assessing the impact of
interference.

The simultaneous operation of various applications in a dat-
acenter creates a multitude of tail latency or IPC values, which
pose a significant challenge in quantifying the exact intensity
of the interference in the overall system. This is because these
values are calculated at the individual application level and do
not provide a comprehensive system perspective. Therefore,
the need to holistically quantify and reduce interference in a
datacenter is a crucial issue that requires attention. In Sec-
tion V-C, we will present a detailed example to illustrate this
challenge.

Previous research has utilized different approaches to quantify
interference in a datacenter, such as the ratio of tail latency over
instruction throughput [52], reduced service rate of a virtual
machine (VM), and the duration of interference [57], [58].
Although these methods have demonstrated effectiveness in
specific cases, they are primarily ad hoc, and their units are not
well-defined, rendering them challenging to apply in diverse
scenarios.

In this study, we present system entropy (ES) to quantify
the interference within a datacenter. Conventionally, entropy
is a physical concept with multiple versions, including ther-
modynamic entropy and information entropy. The reason we
chose to use the term “system entropy” is because the in-
terference in a datacenter involves multiple applications con-
tending for limited resources, similar to the thermodynamic
entropy caused by collisions between molecules. To demon-
strate the correctness and rationality of system entropy, we
adhere to the three-step paradigm of information entropy (see
pages 10 and 11 in [49]). Specifically, we first define the
required properties of ES , propose an analytical expression

for ES , and validate that the expression satisfies the required
properties.

In this study, we categorize the resource management capabil-
ities of data centers into three aspects (differentiation, isolation,
prioritization, as discussed in Sections II and III) and break
down the causes of interference into three aspects (resource
scarcity, switch overhead, scheduling inappropriateness, as de-
scribed in Section IV-B). Subsequently, the DIP theorem is
proposed to leverage the first three aspects to mitigate the latter
three.

The DIP theorem has significant implications for the design of
resource isolation or sharing strategies among LC applications,
among BE applications, and between LC and BE applications.
For example, various state-of-the-art resource managers [13],
[17], [26], [27], [33], [34], [40], [41], [42], [43] utilized resource
isolation techniques to isolate colocated applications and elim-
inate resource interference. However, some researchers have
shown that such isolation may reduce resource utilization [12],
[19], [44]. Furthermore, these methods primarily focus on cache
partitioning and are only suitable for BE applications. In this
study, we demonstrate that strict isolation often results in re-
duced resource utilization, and that allowing resources to be
flexibly shared or isolated among applications has the potential
to effectively mitigate the interference of both LC and BE
applications.

In this paper, we propose the Ah-Q toolkit, which includes
two theorems, a metric and a scheduling strategy. Specifically,
we present the following contributions:

� We formalize a series of frequently used cloud com-
puting concepts, propose the DIP theorem to deter-
mine whether a datacenter can guarantee QoS and
achieve high-throughput, and propose the TLT theorem
to formulate the relationship between tail latency and
throughput.

� We introduce ES , a dimensionless single “figure of merit”
for datacenters that can be used to quantify and evaluate
interference. To develop ES , we identify its required prop-
erties, propose an analytical expression, and demonstrate
that the expression satisfies the necessary properties. We
also introduce the concept of “resource equivalence” based
on ES , which can be used to evaluate the effectiveness of
different scheduling strategies.

� We design an associative scheduling strategy, ARQ, that
leverages detected entropy as feedback to reduce inter-
ference. ARQ allows partial resource sharing between
LC and BE applications and dynamically adjusts the size
of isolated and shared resources. We build a space-time
resource utilization model to interpret the advantages of
ARQ over previous strategies and to explain the causes
of interference. We evaluate ARQ against state-of-the-art
strategies, CLITE and PARTIES. Our results show that
ARQ has significantly reduced ES , leading to an overall
improvement in user experience and throughput.

In the following, Section II formalizes the key concepts of
cloud computing and formally defines the resource management
abilities of a datacenter. Section III presents three lemmas to es-
tablish the relationship among the abilities. Section IV presents

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

734 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Fig. 1. Service framework of cloud computing.

two theorems for managing the interference within a datacenter.
Section V proposes the system entropy ES . Section VI presents
the ARQ scheduling strategy. Section VII validates the system
entropy ES . Section IX evaluates the ARQ scheduling strategy.
Section X overviews related work, and finally Section XI con-
cludes our study.

II. FORMALIZING CLOUD COMPUTING CONCEPTS

To the best of our knowledge, there is no formalization for the
key concepts of cloud computing and the resource management
abilities of a datacenter.

The service framework of cloud computing is shown in Fig. 1.
We define a datacenter S as an ordered triple (i.e., S = �t, r, c�),
where t represents the set of time-slices t1, t2, . . ., tm, r repre-
sents the set of resource-slices r1, r2, . . ., rn, and c represents
the set of resource management abilities.

Tail latency refers to the response time of a application i in
a datacenter S, running with other co-running applications i,
and is defined as the �th percentile response times, where �% =
P{L(i, i, S) � L�(i, i, S)}. The tail latency of application i is a
function of three variables, namely application i, i’s co-runners
(i.e., i), and datacenter S, denoted as L� = L�(i, i, S). The tail
latency of application i with no co-runners is referred to as the
ideal tail latency,Li0 = L�(i,�, S), while the actual tail latency
of application i with co-runners is denoted by Li1 = L�(i, i, S).

Turing’s definition of computability assumes that a computer
has infinite memory resources and can run indefinitely, which
is not applicable in practical scenarios. In order to account
for these practical limitations, we introduce the concept of
practical computability. Specifically, given a set of co-running
applications (i) in a datacenter S, a application i is considered
to be Practically Computable (PC) if its tail latency is below a
user-defined threshold value (i.e.,Mi) that is deemed acceptable
for a satisfactory user experience. More formally, we define
(PC(i, i, S) = 1) � (L�(i, i, S) � Mi), where Mi represents
the minimum user experience requirement for application i.
The predicate PC(i, i, S) takes values of 0 or 1, indicating the
application’s practical computability status.

We define Weighted Number of Inversions (wNoI) to measure
the degree of deviation from an optimal scheduling order in a
datacenter, accounting for the differential impacts of interfer-
ence on different applications. To calculate wNoI , we define a
permutation �, where �(i) represents the position of application
i in the scheduling sequence. If i < j and �(i) > �(j), either

Fig. 2. Example of concurrent applications.

the pair of positions (i, j) or the pair of applications (�(i),
�(j)) is called an inversion of �. The set of all inversions is
referred to as the inversion set, and the number of inversions is
denoted by NoI . For each inversion (i, j) in the inversion set,
we associate a tail latency addition w(S, i, j), representing the
impact of application j taking precedence over application i.
Then wNoI(S, T1, T2) = w(S, T1, T2)×NoI(T1, T2), where
NoI(T1, T2)= 1 or 0 depending on whetherT2 takes precedence
over T1.

A datacenter has the option to choose whether or not to
implement resource management abilities. The Tolerance Abil-
ity (TA) reflects the gap between the standalone performance
of a datacenter and the user experience requirement. On the
other hand, Distinguishing Ability (DA), Isolation Ability (IA),
and Prioritizing Ability (PA) reflect abilities to eliminate the
interference caused by the co-running applications.

For application i, TA is determined by its user-defined thresh-
old, Mi, and the ideal tail latency, TLi0, which is the tail
latency when no interference exists. The anti-interference ca-
pacity of application i, represented by Xi, is the interference
that it can tolerate and is given by Xi = Mi � TLi0, where
i = 1, 2, . . . , N . In practice, Xi > 0, indicating that application
i has some slack that can be used to increase the tail latency
without compromising the user experience. As shown in (1), TA
of a datacenter is a function of the tolerance abilities of all its
applications.

TA =
N�

i=1

Xi

Mi
=

N�

i=1

�
1�

TLi0

Mi

�
(1)

Fig. 2 illustrates the values of TLi0, TLi1 and Mi for three
applications. The TA of a datacenter depends on TLi0 and Mi
and is not related to TLi1. In this example, the anti-interference
capacities X1, X2, and X3 are 5, 4, and 3, respectively, resulting
in an overall TA of 12. Applications 1 and 3 have practical
computability since their respective TLi1 values, TL11 and
TL31, are less than their Mi values. However, application 2
does not have practical computability because its tail latency,
TL21, is greater than its M2 value.

DA is the ability of a datacenter to differentiate and identify the
owners of any resource-slice (rs) for any time-slice (ts) within
a datacenter. A datacenter with DA=1 is able to identify the
owners (Owners(rs, ts)) of any resource for any application.
DA is an important property for ensuring fairness and avoiding

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SUPPRESSING THE INTERFERENCE WITHIN A DATACENTER: THEOREMS, METRIC AND STRATEGY 735

resource monopolization. Without DA, a malicious application
may intentionally monopolize resources to the detriment of other
applications. The ability to identify resource owners enables a
datacenter to monitor resource usage and enforce appropriate
policies.

IA is a critical property that ensures that a datacenter can
strictly isolate resources allocated to different applications. A
datacenter is said to have isolation ability if, during a continuous
time-slice sequence {tn, tn+1, . . ., tn+i}, a resource-slice rs
can only be accessed by at most one application. It should
be noted that the resource adjustment time granularity of IA
is a continuous sequence of time-slices. During this sequence
of time-slices, even if the application to which the resource is
allocated does not utilize the resource, other applications are
still unable to use the resource. IA can also be referred to as
the non-preemptible exclusivity, which means that the resource
cannot be used by any other application during the time-slice
sequence.

PA is the ability of a datacenter to prioritize concurrent appli-
cations according to a certain criterion. Without any prioritizing
ability, the order of the co-running applications is random.

III. RELATIONSHIP BETWEEN DA, IA AND PA

In this section, we present three lemmas to elaborate the
relationship among the management abilities of a datacenter.

Lemma 1: If a datacenter S has isolation ability, then it must
also have distinguishing ability.

Proof. Suppose that datacenter S does not have dis-
tinguishing ability. This means that S cannot distinguish
which application is using (rs, ts). Suppose further that mul-
tiple applications, tn, tn+1, . . ., tn+i, are using the (rs, ts)
simultaneously in practice. Since S cannot distinguish
which application is using the (rs, ts), S cannot guarantee
|Owners(rs, {tn,tn+1, . . ., tn+i})| � 1, which contradicts the
assumption that S has isolation ability. Therefore, we have
shown that if datacenter S has isolation ability, then it must
have distinguishing ability.

Lemma 2: If datacenter S possesses prioritizing ability, then
it must also possess distinguishing ability.

Proof: We prove Lemma 2 by contradiction. Let us assume
that DA(S) = 0, i.e., datacenter S does not have distinguish-
ing ability. In this case, we need to prove that PA(S) = 0,
i.e., S does not have prioritizing ability. If S cannot identify
the applications that are using (rs, ts), S cannot ensure that
|Owners(rs, {tn, tn+1, . . ., tn+i})| � 1, which means that S
is unaware when multiple applications are using the (rs, ts)
simultaneously. Consequently, S cannot prevent this case from
occurring, and a less important application would potentially be
prioritized by a more critical one.

Lemma 3: The isolation ability (IA) and prioritizing ability
(PA) of a cloud datacenter are complementary to each other.

Proof: The proof of Lemma 3 follows from the defini-
tion of IA and PA. IA achieves isolation by exclusively al-
locating a resource-slice to a application for several time-
slices, which eliminates the uncertainty of performance of the

Fig. 3. Venn diagram of the resource management abilities of diverse com-
puters in terms of the DIP.

application and reduces the overhead of resource owner switch-
ing. On the other hand, PA achieves prioritization by changing
the owner of resource-slices more granularly, adapting to the
fluctuating resource requirements of applications in a timely
manner. These two mechanisms complement each other, as
IA provides stability and predictability to the allocation of
resources, while PA provides flexibility and adaptability. Thus,
IA and PA are two important and complementary mechanisms
for ensuring efficient and effective resource allocation in cloud
datacenters.

According to Lemmas 1, 2 and 3, we can categorize data-
centers into five different types based on their control abilities,
as shown in Fig. 3. The control ability set, c, is progressively
expanded by adding DA, IA, and PA to it. The five categories
are as follows: (1) c = �, indicating that the datacenter has
no control abilities; (2) c = {D}, indicating that the datacenter
has only DA; (3) c = {D, I}, indicating that the datacenter has
both DA and IA; (4) c = {D, P}, indicating that the datacenter
has both DA and PA; and (5) c = {D, I, P}, indicating that the
datacenter has all three control abilities.

IV. THEOREMS FOR MANAGING INTERFERENCE

We establish a pair of theorems for managing the interference
within a datacenter.

A. The DIP Theorem

Theorem 1: (DIP Theorem). To ensure high-throughput
computing and meet the practical computablility (PC) of highly
concurrent applications, a datacenter with finite resources has
limited TA and therefore must have possess DIP (DA, IA, and
PA) abilities to eliminate application interference before TA is
exhausted. Specifically, � when available resources are plenti-
ful, a datacenter does not require DIP abilities to fulfill the PC of
all applications; � when resources are limited, PA is necessary
to ensure the critical applications’ resource requirements are
met; � when application switching overhead is significant,
IA is required to prevent frequent resource switching among
applications; � when resources are scarce, and application
switching overhead is significant, DIP abilities that strikes a

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

736 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

balance between “isolation” and “sharing” to simultaneously
reap their benefits can guarantee the PC of critical applications
to the maximum degree.

Proof. We decompose the causes of interference into three
factors.

Factor A: In a datacenter, there is a contradiction between
finite resources and the high concurrency of applications. With
multiple applications contending for limited resources, some
applications may not receive sufficient resources, leading to
reduced QoS. Without IA and PA, colocated applications are
allocated resources randomly, making it impossible to guarantee
the QoS of critical applications. If the datacenter has PA, it can
prioritize resources for high-priority applications. Meanwhile,
IA can allocate exclusive resources to critical applications, but
due to the non-preemptible exclusivity of IA, it cannot handle
fluctuating resource requirements. Therefore, PA is essential to
cope with the fluctuating resource requirements of applications
when resources are scarce.

Factor B: The use of resource slices alternately leads to
non-negligible resource switching overhead, which causes in-
terference. When multiple applications are time-division mul-
tiplexed on the same resource-slice, or the same application is
switched on different resource-slices, the switching overhead
of time-slices or resource-slices occurs. This overhead exists
widely across various types of resources, such as processing
core resources where the context of the application needs to be
saved and switched, and shared cache resources where the cache
lines need to be refilled [27].

While IA can avoid this switching overhead, PA cannot.
Without IA, low priority applications can still occupy idle
resource-slices, resulting in switching overhead when high pri-
ority applications require those resource-slices. To avoid this
interference, IA makes the resource-slices be exclusively used.
Therefore, IA is needed to handle the interference caused by
resource switching overhead.

Factor C: Inappropriate resource scheduling can lead to
resource waste. The resource scheduler must take into account
various factors, including space-time interleaving of applica-
tions, the urgency of the applications, and the overhead caused
by switching time-slices or resource-slices. If a application
does not fully utilize the isolated resources allocated by the
scheduler, it can result in lower resource utilization and wastage.
This wastage can occur in various types of resources such as
processing cores, cache, memory, and storage. Proper resource
scheduling can ensure that the resources are utilized efficiently,
which can lead to better performance and cost savings.

Fig. 4 provides an example to illustrate the three interference
factors discussed above with respect to the characteristics of
IA and PA. Fig. 4(a) and (b) depict the resource requirements
of critical and non-critical applications when executed alone,
respectively, where the resource requirements of the critical
applications are subject to fluctuation. Fig. 4(c) displays the
cyberspacetime when these two applications are colocated on
a datacenter equipped with PA but lacking IA. Although the
available resources cannot satisfy the resource requirements of
both applications simultaneously, the resource requirements of

Fig. 4. Cyberspacetime example of two applications running on the datacenter
with IA or PA.

the critical application are always fulfilled through PA, effec-
tively addressing interference factor A. However, the space-time
interleaving of the resource usage of the two applications causes
interference factor B to arise.

Fig. 4(d) depicts the cyberspacetime when the two applica-
tions are colocated on a datacenter with IA but not PA. To avoid
interference factor B, critical applications are allocated to run on
R1 and R2, while non-critical applications are allocated to run
on R3, R4, and R5 through IA. However, the non-preemptible
exclusivity of IA limits the datacenter’s ability to cope with the
fluctuating resource requirements of applications, which results
in the bursty resource requirement of the critical application
(e.g., the 6-th time-slice of Fig. 4(d)) being restricted by the
amount of isolated resources. This limitation causes some re-
quests to be deferred, resulting in interference factor A. More-
over, some isolated resources allocated to critical applications
are not fully utilized, resulting in interference factor C.

In practice, Heracles [34] and PARTIES [13], as well as other
resource scheduling strategies, have demonstrated the effec-
tiveness of IA in reducing interference between applications.
However, they are unable to schedule resources by priority at the
granularity of the time-sliceTs. Consequently, they are unable to
address the resource requirements of microsecond-level bursts,
and can only reserve enough isolated resources to ensure QoS.
On the other hand, the resource scheduling strategy Caladan [21]
can meet all of the PA conditions and can schedule shared
resources with microsecond-level time granularity to address
bursty resource requirements of applications. However, although
it includes a scoring mechanism to reduce switching overhead,
it does not use IA to avoid switching overhead.

The objective function in the DIP theorem’s resource schedul-
ing is system entropy, which will be presented in Section V.
Details regarding achieving a balance between “isolation” and
“sharing” will be discussed in Section VI.

B. The TLT Theorem

Tail latency is a widely accepted metric for measuring the
performance of latency-critical applications. However, as far
as we know, there is currently no precise formula describing
the relationship between tail latency and throughput. We now

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SUPPRESSING THE INTERFERENCE WITHIN A DATACENTER: THEOREMS, METRIC AND STRATEGY 737

present the TLT (acronym for ”tail latency and throughput”)
theorem in the following.

Theorem 2: (TLT theorem). Assume that the latency val-
ues that are no more than the tail latency contribute to the
average latency by at least f • 100%. For any distribution of
request processing latency, the upper bound of the throughput
of a datacenter is shown in (2), where RLP is request level
parallelism which represents the number of outstanding requests
in a datacenter (including requests that are being processed and
requests that are queued for processing), � is the throughput in
terms of the number of responses per second delivered by a
datacenter, and TL� represents the �th percentile tail latency.
Therefore, reducing tail latency can effectively increase the
throughput.

� �
RLP
TL�

•
1� f
1� �%

(2)

Proof: Using Little’s Law [31], we can derive (3), where AL
represents the average latency of requests.

RLP = � •AL (3)

Let (�, p) be a finite probability space, meaning that � is a
finite set, and p = Prob is a mapping from � to the interval [0, 1]
and satisfies the condition

�
w�� p(w) = 1. A random variable

X on � is a mapping X : � � R. We define a probability space
X(�) on the image set by setting p(X = x) =

�
X(�=x) p(w).

The probability of the latency L being greater than L� can be
represented by (4).

Prob(L � TL�) =
�

�: L(�)�TL�

p(�) (4)

For AL, we have (5).

AL =
�

�: L(�)�TL�

p(�)L(�) +
�

�: L(�)<TL�

p(�)L(�)

�
�

�: L(�)�TL�

p(�)L(�)

� TL�
�

�: L(�)�TL�

p(�) (5)

Combining (4) and (5), we derive (6).

Prob(L � TL�) �
AL
TL�

(6)

Then the relationship between average latency and tail latency
can be expressed as (7).

TL�

AL
�

1
1� �%

(7)

Furthermore, given that the latency distribution of real-world
applications tends to be irregular, we divide the latency into
multiple intervals as shown in (8).

AL =
�

�: L(�)�TL�

p(�)L(�) +
�

�: L(�)<TL�

p(�)L(�)

� TL� • Prob(L � TL�) +
�

�: L(�)<TL�

p(�)L(�) (8)

Fig. 5. Probability density functions and cumulative density functions of
requests latency.

Fig. 6. Example of little’s law extension for tail latency (the x-axis is the tail
latency, the y-axis is the throughput of the system, and the upper left corner is
the zone of satisfactory solutions).

Since the latency values that are smaller than the tail latency
contribute to the average latency by a factor of f , we can
derive (9).

Prob(L � TL�) �
AL� f •AL

TL�
(9)

Therefore, we have (10)

TL�

AL
�

1� f
1� �%

(10)

Combining (10) and (3), we can derive (2).
In the field of cloud computing, the term ”load” is generally

used to represent RLP with the unit being queries per second
(QPS). In practical applications, ”load” is usually normalized
QPS (relative to the max load), presented as a percentage.

Fig. 5 presents the probability density functions and cumu-
lative density functions of request latency, using Img-dnn and
Moses as examples. The experimental setup for this analysis will
be elaborated in Section VII-A.

Theorems 1 and 2 demonstrate that a high concurrency level
does not necessarily result in high throughput. In fact, a high-
concurrency datacenter can exist in one of two states: either it
has low latency and high throughput, or it has high latency and
low throughput. The decision between these two states depends
on whether the datacenter has the DIP resource management
abilities.

Fig. 6(a) illustrates two possible states of a datacenter that
has a high RLP: “low-tail-latency and high-throughput” (repre-
sented by q1) or “high-tail-latency and low-throughput” (repre-
sented by q2).

The tail latency values in a datacenter can vary depending on
the level of RLP, even when the throughput remains the same.
For instance, in Fig. 6(a), the q2 point represents a datacenter
with high RLP (i.e., 40) and high tail latency, while the q3 point

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

738 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Fig. 7. Scalability of a datacenter (take Moses and Img-dnn applications as
example).

represents a datacenter with low RLP (i.e., 20) and low tail
latency. It is important to note that as RLP increases it becomes
more challenging to achieve the same tail latency in a datacenter.
To achieve a high-throughput system, DIP is needed to reduce
interference among high-concurrent applications, moving the
system state from q3 to q1, as illustrated in Fig. 6(a).

Fig. 6(b) displays the Little’s Law curves for various per-
centiles of tail latency, with the q1 and q3 points corresponding
to the 95th and 99th percentiles of tail latency, respectively.
For datacenters with the same RLP and throughput, increasing
the value of � leads to larger tail latency values. The q2 and
q3 points represent the difference in throughput resulting from
more stringent tail latency targets; specifically, more stringent
tail latency targets lead to higher throughput.

While cloud computing differs from supercomputing, data
centers still face scalability challenges that have yet to be fully
defined and addressed. In this study, we define data center
scalability as the improvement in throughput with increased
RLP.

The wNoI(T i) metric is used to quantify the impact of
interference on tail latency as RLP increases, making it a use-
ful indicator of a datacenter’s scalability. By contrast, for a
supercomputer, the memory-bounded speedup (also known as
Sun-Ni’s law [53]) is used to measure scalability as workload
size increases. In this case, a function g(x) is used to map
available memory size to memory-bounded workload size, and
g(x) serves as a scalability indicator for the supercomputer.
Fig. 7 illustrates how tail latency and throughput increase with
RLP, with the active and linear regions being desirable and the
occurrence of the saturated region being what the DIP abilities
aim to prevent.

V. THE SYSTEM ENTROPY (ES)

In this section, we introduce the system entropy (ES) to
measure interference in a datacenter. We first present the prop-
erties that this measure should possess in Section V-A. Next, we
propose an analytical definition for ES in Section V-B. Finally,
we summarize the advantages of ES in Section V-C.

A. The Required Properties of ES

To ensure that ES effectively measures the interference in a
datacenter, we propose three required properties for this mea-
sure.

TABLE I
LIST OF SYMBOL ABBREVIATIONS

� ES should be dimensionless, meaning that it should not
have any units (such as time or resource units) and its value
should fall between 0 and 1. The closer ES is to 1, the greater
the interference in the datacenter.

� ES should be sensitive to changes in resource amount.
Specifically, if the number of available resources in the data-
center increases, ES should decrease or at least not increase,
given a set of co-running applications and a resource scheduling
strategy.

�ES should be sensitive to changes in scheduling strategy. If
a fixed number of available resources is given, and the scheduling
strategy has reduced resource contention among applications,
ES should decrease, given a set of co-running applications.

In the remaining part of this section, we will present the
analytical expressions for ES in three different scenarios within
a datacenter. For ease of reference, Table I provides a list of
symbol abbreviations used throughout this paper.

B. The Analytical Expression of ES

The first scenario considers a datacenter where only n differ-
ent LC applications are running, and no BE application exists.
In this case, the system entropy is equivalent to the entropy of
the set of LC applications, denoted as ELC . The definition of
ELC is as follows.

In a datacenter, each LC application has three fundamental
attributes. We consider application i (i = 1, 2, . . ., n), where
TLi0 represents the ideal tail latency of application i, i.e., the
tail latency when application i is not subject to any interference.
TLi1 denotes the tail latency of application i when it is under
colocation, which may result in interference. Furthermore, Mi
is the maximum tail latency that application i can tolerate. It
is worth noting that the ideal latency TLi0 can be achieved by
temporarily allocating sufficient resources to application i using
resource isolation technology. We can quantify the interference
tolerance of application i using (11).

Ai = 1�
TLi0

Mi
(11)

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SUPPRESSING THE INTERFERENCE WITHIN A DATACENTER: THEOREMS, METRIC AND STRATEGY 739

The user-defined target forMi is influenced by various factors
and is considered to be only of reference significance. Users
determine the Mi value based on two principles - the more
critical the application is, the lower the tail latency threshold, and
the value is usually chosen from the flat to small-slope region.
As a result, the target has some flexibility, and in this study, we
assume that the relative elasticity of Mi is 5%.

The value of Ai in (11) lies in the range of [0, 1], since TLi0
is always no more than Mi. As Mi decreases, the value of Ai
approaches 0, indicating a lower tolerance for interference by
the application. Conversely, as Mi increases, Ai approaches 1,
indicating a higher tolerance for interference. To quantify the
interference experienced by application i, we use Ri in (12).

Ri = 1�
TLi0

TLi1
(12)

AsTLi0 is no more thanTLi1, the range ofRi falls between 0
and 1. If TLi1 is smaller, then Ri approaches 0, indicating min-
imal interference to the application, and vice versa. To denote
the remaining tolerance of application i after being interfered,
we use ReTi as expressed in (13).

ReTi =
�
Ai > Ri ? 1�

TLi1

Mi
: 0

�
(13)

(14) introduces Qi as a measure of the interference that an
application i cannot tolerate. If the interference suffered by the
application (Ri) is greater than its interference tolerance (Ai),
then Qi is computed as 1 minus Mi/TLi1. On the other hand,
if the interference suffered by the application is smaller than
or equal to its interference tolerance, then Qi is set to 0. By
definition, the value of Qi lies between 0 and 1. The closer Qi
is to 1, the more severe the interference that the application i
cannot tolerate.

Qi =
�
Ri > Ai ? 1�

Mi

TLi1
: 0

�
(14)

The values ofAi,Ri andQi introduced above have motivated
us to propose a resource scheduling strategy called ARQ, which
will be presented in Section VI. In addition, we define ELC as
the interference that the LC applications are unable to tolerate,
which is represented by (15).

ELC =
1
n

n�

i=1

Qi (15)

In the second scenario where onlym different BE applications
are running, but no LC application exists in the datacenter, we
define ES as the BE entropy (EBE). EBE is defined as the
slowdown incurred by the interference that the BE applications
have suffered. The EBE is expressed as shown in (16), where
IPCsolo(i) denotes the IPC when the BE application i runs
alone and IPCreal(i) denotes the IPC when the BE application
i suffers interference.

EBE = 1�
m

�m
i=1

IPCsolo(i)
IPCreal(i)

(16)

When all BE applications are free from interference, EBE is
0. The closer the ratio of IPCsolo(i) over IPCreal(i) is to 1

Fig. 8. Tail latency of the LC applications, IPC of the BE application and the
entropy values under resource scheduling strategies A and B. The dotted box
represents the QoS target of the LC applications.

for each BE application i, the lower the interference level, and
the closer the value of EBE is to 0. Conversely, the higher the
interference level for any BE application i, the larger the ratio of
IPCsolo(i) over IPCreal(i) becomes, and the closer the value
of EBE is to 1.

The third scenario involves the coexistence of LC and BE
applications in a datacenter, and in this case, theES is expressed
as a linear combination of ELC and EBE , as shown in (17). The
relative importance (RI) is introduced to determine the weight
of each component in the combination.

ES = RI × ELC + (1�RI)× EBE (17)

The rationale behind (17) is to minimize both ELC and EBE
simultaneously to obtain the minimum ES . Normally, the value
of RI ranges from 0 to 1. However, when there are insufficient re-
sources, minimizing ELC takes priority over minimizing EBE .
In such cases, the range of RI is adjusted to [0.5, 1].

It is worth noting that Scenario 1 and 2 are the two extreme
cases of Scenario 3. When the datacenter only runs BE appli-
cations, the system entropy only needs to consider EBE , and
therefore RI is set to 0. This is a common scenario in traditional
high-performance computing environments. Conversely, when
the datacenter only runs LC applications, RI is set to 1. The larger
the value of RI , the higher the priority of the LC applications
over that of the BE applications. The value of RI can be
determined by datacenter managers based on various factors
such as the criticality of LC applications, fairness among all
applications, and economic benefits. In this study, we set RI to
0.8, which is representative and captures the trade-off between
LC and BE applications.

In our current model, all LC applications are treated equally,
and so as BE applications. The reason is that we focus on the
criticality difference between LC and BE applications. However,
if necessary, the ES model can be extended to involve different
RI factors among the same type of applications.

C. The Advantages of ES Over Other Metrics

We demonstrate the superiority of the proposed ES over tail
latency and IPC metrics using a simple example. Fig. 8 depicts
the tail latency, tail latency threshold of the LC applications,
and IPC of the BE applications under two different strategies
(i.e., A and B). With the information presented in Fig. 8, it is
not easy to determine which strategy is superior. However, the
ES metric allows us to do so precisely and reasonably. The ES

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

metric offers several advantages over traditional metrics like tail
latency and IPC, which will be discussed in the following.

First, ES provides a concise representation of the overall
system performance, making it easy for datacenter managers
to compare different strategies and make decisions accordingly.
In contrast, using tail latency and IPC separately can lead to a
complex and cumbersome analysis, particularly in large-scale
datacenters with numerous applications [23]). For instance, in
the example presented in Fig. 8, even though there are only a few
applications, analyzing the performance of each application un-
der different strategies requires examining multiple performance
metrics (i.e., the tail latency and the target threshold of each LC
application, and the IPC of each BE application) simultaneously,
which can be time-consuming and error-prone.

Second, ES provides a more comprehensive reflection of the
overall user experience of many colocated applications. When
the resource scheduling strategy changes, it may improve the
performance of some applications but degrade the performance
of others. With IPC and tail latency, it is difficult to determine
whether the overall user experience of a datacenter is improved
or not. It is worth noting that QoS guarantee does not require re-
ducingELC to zero, and a smallELC is tolerable. The definition
of ES takes this into account. In the example, strategy A is not
inferior to strategy B because the QoS violation in strategy A is
tolerable. The QoS violation of the LC application (Img-dnn) in
strategy A is small (i.e., 4.4%), which is less than the elasticity
of the tail latency threshold (i.e., 5%), and the IPC improvement
of the BE application (Fluidanimate) is significant (from 1.15 to
2.63, that is 128.7%). Therefore, it is more reasonable to prefer
strategy A over strategy B.

Third, ES can be used to define resource equivalence. In a
datacenter, increasing available resources is challenging due to
budget and power constraints [59]. Therefore, it is vital to focus
on improving resource usage and increasing utilization. ES can
be used to evaluate the effectiveness of a scheduling strategy
in terms of resource saving. Specifically, when comparing two
scheduling strategies, we can evaluate their resource savings by
achieving the same “overall user experience”. We can say that
a scheduling strategy p1 is inferior to p2 if p1 requires more
resources than p2 to achieve the same ES . If the amount of
resources used by p2 is R and p1 uses �R more resources,
then ES(p1, R+�R) = ES(p2, R), and �R is the resource
equivalence of strategy p2 relative to p1. This allows for a more
comprehensive evaluation of the efficiency of scheduling strate-
gies and can help identify the most resource-efficient options.

VI. THE ARQ SCHEDULING STRATEGY

In this section, we propose a new scheduling strategy called
ARQ, which aims to combine the benefits of resource sharing
and resource isolation to minimize system entropy. The name
“ARQ” is an acronym for the three essential factors of an LC
application: Ai, Ri and Qi, as discussed in Section V-B. By
leveraging these factors, ARQ strives to maximize resource uti-
lization while maintaining a low level of interference among ap-
plications. We present the allocation and overhead comparisons

over other strategies in Section 2.2 of the separate supplemental
file.

A. Demonstrating the Key Insight Via a Space-Time Model

The observation has been made that resource isolation can
reduce performance uncertainty, while resource sharing can
increase resource utilization and overall throughput. Therefore,
in order to minimize ES , we propose to exploit the combination
of both resource isolation and resource sharing.

The existing resource scheduling strategies, such as those
presented in references [12], [13], [21], [34], [43], have utilized
resource isolation techniques to ensure QoS. This means that
each application is assigned its own dedicated resources and
cannot use the resources assigned to other applications. How-
ever, this approach often results in low resource utilization due
to the underutilization of resources assigned to idle applications.

Take the processing unit resources as an example. We assume
that when the datacenter can provide a service rate of at least
U , the QoS target of the LC applications can be satisfied. We
also assume that one core can provide a service rate of 0.8U ,
and two cores can provide a service rate of 1.6U . If only one
core is allocated to the LC application, its service rate will be
lower than the required minimum of U , resulting in violation of
the QoS target. On the other hand, allocating two cores to the
LC application would meet its QoS target, but it would lead to
wastage of resources and hence reduce the throughput of the BE
application. Therefore, a trade-off needs to be made between
meeting the QoS target of the LC application and maximizing
the resource utilization of the data center. This is where the
ARQ strategy comes into play by combining resource sharing
and resource isolation techniques to achieve the optimal balance
between QoS and resource utilization.

Fig. 9 illustrates a space-time model that demonstrates various
resource scheduling schemes. The model considers two LC ap-
plications (i.e., LC1 and LC2) and one BE application (i.e., BE)
using only one resource-slice (e.g., one processing unit or one
LLC way) and eight time-slices. Three different scenarios are
examined. In scenario (a), each application runs alone, enabling
us to determine the space-time resource requirement of each
application. When there are two or more ticks in a time-slice,
resource contention occurs. For example, in time-slice 6, all
three applications require the same resource-slice, resulting in
resource conflict.

In scenario (b), the resource-slice is isolated and exclusively
allocated to LC1, ensuring that only LC1 can use the resource-
slice and meeting the QoS target of LC1. However, during some
time-slices (e.g., time-slice 3), the resource-slice is not needed
by LC1, but other applications that require the resource-slice
cannot use it, resulting in resource waste.

In scenario (c), all applications share the resource, but LC
applications are given priority over BE applications. At the start
of time-slice 3, the ownership of the resource is transferred from
LC1 to BE, which boosts the throughput of BE. However, this
transfer incurs a cost in terms of context switching overhead
and/or cache pollution. The triangle in the figure represents the
performance boost obtained through the use of the resource,

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: SUPPRESSING THE INTERFERENCE WITHIN A DATACENTER: THEOREMS, METRIC AND STRATEGY 741

Fig. 9. Illustration of the space-time model (for brevity, only one resource
slice and eight time-slices are considered).

with the associated overhead. At the beginning of time-slice 4,
the resource owner is transferred from BE to LC2, improving
the QoS of LC2.

Comparing scenario (c) with scenario (b), we can observe that
the number of crosses is reduced from 10 to 6, and there are four
more triangles in scenario (c). As a result, the resource utilization
ratio has been almost doubled. The key insight here is that while
resource isolation can reduce performance uncertainty, resource
sharing is essential for improving system utilization. Therefore,
neither complete isolation nor sharing is the optimal strategy for
enhancing the overall user experience. Instead, it is necessary
to simultaneously leverage the benefits of both isolation and
sharing to achieve optimal resource utilization and performance.

B. Design of the ARQ Strategy

The ARQ (Adaptive Resource sharing and isolation for QoS)
strategy divides resources into two regions: shared and isolated.
These regions include a number of cores and cache ways. LC
applications have access to both their own isolated region and
the shared region, while the BE application can only run in the
shared region. The key idea is to simultaneously harvest the
benefits of resource sharing and isolation, as neither approach
is optimal on its own.

If an LC application running in the shared region meets its QoS
target, its isolated region’s resources will gradually decrease
to 0, indicating that it can safely share resources with other
applications. However, if an LC application’s QoS is severely
impacted while running in the shared region, the ARQ strategy
detects this interference and gradually increases its isolated

Algorithm 1: ARQ Resource Scheduling Algorithm.
1: function ARQ
2: isAdjust �False, ES � 1
3: while True do
4: Monitor the tail latency values of the LC applications

and the IPC values of BE applications periodically
5: E�

S � ES
6: ES � computeEntropy()
7: // ReT is an array, the elements of which are the

remaining tolerance of each LC application.
8: ReT � computeRemainingTolerance()
9: if isAdjust and ES > E �

S then
10: Cancel the last adjustment and do not allow the

last victim region to be penalized in the next 60s.
11: isAdjust � False
12: else
13: isAdjust � AdjustResource(ReT)
14: end if
15: end while
16: end function
17:
18: function adjustResource
19: victimRegion � findVictimRegion(ReT)
20: beneficiaryRegion �

findBeneficiaryRegion(ReT)
21: // Choose one type of the resources (i.e., core, LLC,

or memory bandwidth, etc) of victimRegion.
22: �R � findVictimResource(victimRegion)
23: Move one unit resource of type �R from the

victimRegion to the beneficiaryRegion
24: return whether the resource has been actually

adjusted
25: end function
26:
27: function FINDVICTIMREGION
28: for each ReTi in descending order do
29: if ReTi > 0.1 and application i has isolated resource

that allows to be penalized then
30: return the isolated region of application i
31: end if
32: end for
33: return the shared region
34: end function
35:
36: function FINDBENEFICIARYREGION
37: Identify the application i that has the smallest ReT.
38: if ReTi < 0.05 then
49: return the isolated region of application i
40: else
41: return the shared region
42: end if
43: end function

Authorized licensed use limited to: ShanghaiTech University. Downloaded on March 28,2024 at 15:04:44 UTC from IEEE Xplore. Restrictions apply.

