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Abstract—Emerging Non-Volatile Memory (NVM) provides
both larger memory capacity and higher energy efficiency, but
has much longer access latency than traditional DRAM, thus
DRAM can be used as an efficient cache to hide the long latency
of Non-Volatile Main Memory (NVMM) system. Transparent
Off-chip DRAM cache (TOD cache) is a new DRAM cache
structure where off-chip DRAM module is used as L4 cache
and managed by hardware. The capacity and latency ratio of
TOD cache over NVM are both quite different from those of
traditional on-chip SRAM or die-stacked DRAM cache over off-
chip DRAM memory. All the factors including hit latency, miss
latency and hit rate need to be re-considered for TOD cache
design. In this study, we first point out that three types of
traditional cache schemes cannot be used directly for TOD cache,
since set-associative cache suffers from extra tag lookup latency,
direct-mapped cache has low hit rate and tag cache is too small to
efficiently hold the working sets of tags for DRAM cache. Based
on these observations, we propose a novel cache scheme, TDV,
that fuses these three different types of cache together to take
their advantages. In TDV, a direct-mapped cache is used as the
first-level cache to achieve short access latency, a set-associative
victim cache is taken as the second-level cache to obtain extra
high hit rate, and a SRAM tag cache only serves for the victim
cache rather than the whole DRAM cache and thus improves
the hit rate of tag cache significantly. The simulation results
show that, TDV cache has a performance improvement of 6.3%
and 8.3% on average than state-of-the-art direct-mapped (Alloy
cache) and set-associative cache (ATCache) with same DRAM
and SRAM capacity.

Keywords-Non-Volatile Memory; DRAM cache; Cache associa-
tivity; Tag cache; Victim cache;

I. INTRODUCTION

Traditional DRAM based main memory is facing difficulties

to overcome the memory wall, especially to meet the growing

memory capacity demand of emerging big-data applications

[1], [2]. Non-Volatile Memory (NVM) becomes a promising

memory technology to provide larger memory capacity and

higher energy efficiency than DRAM memory [3]–[7]. How-

ever, NVM still has longer access latency especially write

latency than conventional DRAM. So DRAM cache is a
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potentially efficient strategy to achieve short Average Memory

Access Time(AMAT) and has been paid attention by industry

[8]–[14]. For instances, Intel and Micron have announced their

3D XPoint memory technology for availability in 2018, which

uses the DRAM cache together with NVM to combine their

advantages [15]. JEDEC is also working on a hybrid memory

module standard NVDIMM-P which supports memory-like

access to NVM [16].

In academia, many previous studies have researched hard-

ware architectures and scheduling algorithms of DRAM cache

[7]–[12], [14]. However, most of them assume on-chip die-

stacked DRAM cache, and the main memory of their de-

sign is still based on off-chip DRAM module. When main

memory becomes NVM, the capacity of main memory is

far more larger than that of on-died DRAM. Therefore off-

chip DRAM cache is proposed to satisfy the increasing ca-

pacity demand. Off-chip DRAM cache can be classified into

two categories, software-managed and software-transparent.

For software-managed off-chip DRAM cache, data swapping

between DRAM and NVM is managed by software (i.e.,

applications or OS), thus the overhead of cache miss is large.

Software-managed cache usually uses coarse-granularity such

as 4KB page to reduce this overhead, but it is inflexible for

memory extension especially for memory access patterns that

have low spatial locality such as randomly memory accesses.

In comparison, software-transparent off-chip DRAM cache

uses hardware-managed data replacement to support a fine-

grained data swapping size of L1 cache line, e.g. 64B, which

makes miss latency short and data management efficient.

Therefore, transparent off-chip DRAM cache is considered as

a promising DRAM cache solution for NVMM in terms of

performance. In this paper, we study the new features and

design issues of Transparent Off-chip DRAM cache which

will be referred to as TOD cache. Compared to die-stacked

DRAM cache, TOD cache brings us a new design space that

has at least three different aspects to investigate and explore.

The first difference is that, large off-chip DRAM cache

brings more significant overhead of tag storage and access

time. The amount of cache tags becomes too large to be stored

in SRAM buffer on CPU chips. Most of them have to be

stored in DRAM together with the cached data. Accessing tags

in DRAM brings extra latency overhead. For set-associative
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cache, memory controller needs to access DRAM tag first to

check whether data is cached. At least two memory dependent

operations are needed, one for the tag access and matching,

and the other for the following data access. This extra tag

lookup latency makes traditional efficient set-associative cache

inefficient.

The second difference is that, miss latency of TOD cache

is high so that system performance is more sensitive to

cache hit rate. Alloy cache presents a solution to reduce tag

latency overhead that it stores tag and data together and brings

them back together each time [17]. But in order to use this

mechanism, the DRAM cache has to be organized as direct-

mapped. It is well known that direct-mapped cache has lower

hit rate than set-associative cache [18]. Since NVM access

takes a much longer time than DRAM access, DRAM cache

miss latency is much higher than hit latency. Low hit rate

results in high amount of slow NVMM accesses and degrading

performance.

The third difference is that, the capacity gap between off-

chip DRAM and on-chip SRAM becomes larger, making it

more difficult for SRAM tag cache to effectively hold the

working set of tags of TOD cache. Tag cache is an SRAM

buffer on CPU chip used for set-associative DRAM cache.

Memory controller queries the tag cache first before looking up

into DRAM cache. If accessed data tag matched in tag cache,

additional memory access to DRAM for cache tag lookup will

be eliminated. So only one DRAM access occurs on a tag

cache hit. ATCache presents an effective tag cache scheme

which achieves a 10.3% performance improvement compared

to baseline set-associative cache [10]. Unfortunately, the hit

rate of tag cache is sensitive to its capacity. For high-capacity

off-chip DRAM cache, the amount of cache tags is much larger

than before (16GB cache data is corresponding to 512MB

tags), but tag cache is on-chip and thus its area and capacity

is limited to several MB.

These three new differences make that original cache de-

signs cannot be used directly without reconsideration on TOD

cache and we make evaluations to analysis them in detail in

Section III.

In this paper, we propose Tag-Direct-Victim cache (referred

as to TDV cache), which fuses three types of different caches

together. TDV cache is able to achieve high cache hit rate and

low hit latency simultaneously. It uses direct-mapped scheme

for the first-level cache which occupies 75% capacity, set-

associative victim scheme for the second-level cache which

uses only 25% capacity and for which tag cache only serves.

Specifically, compared with direct-mapped cache with the

same capacity, part of cache is organized to be set-associative

to improve hit rate. Compared to set-associative cache, most

cache-hit accesses happen on direct-mapped area which means

that average memory access time is short. Meanwhile, the hit

rate of tag cache can be improved since the tag working set

has been reduced significantly. In TDV cache, a small SRAM

tag cache serves only for set-associative victim area. Since

this area takes only 1/4 capacity of whole DRAM cache, the

cache/data ratio is increased effectively. Test results show that

the average hit rate of tag cache is increased from 69.02% to

85.67%.
Our contributions of this work are summarized as two-fold:
On the one hand, we evaluate the characteristics of TOD

cache of NVMM which is a new thing for community. We

find that the advantage of set-associative cache is counteracted

by extra tag latency, especially when TOD cache shows high

hit rate. Direct-mapped cache has low hit rate which is much

sensitive to high miss latency. We also find that, for high-

capacity DRAM cache, small SRAM tag cache shows low hit

rate, but the efficiency of tag cache is improved near-linearly

when increasing of capacity ratio of tag cache over total cache

tags.
On the other hand, based on our observations and analyses,

we propose TDV cache which has advantages of direct-

mapped, set-associative caches and tag cache. The whole

DRAM cache is separated into two areas where one is direct-

mapped and the other is set-associative. The direct-mapped

area is used as the first-level cache and has low hit latency

and the set-associative area is used as victim cache to improve

hit rate. Due to the set-associative area only takes 25 percent

of whole cache, the capacity ratio of tag cache and the total

tags of set-associative cache in DRAM becomes so high that

tag cache also reaches high efficiency. The evaluation results

show that, our TDV cache has a performance improvement

of 6.3% and 8.3% on average than Alloy cache and ATCache

respectively which are state-of-the-art direct-mapped and set-

associative cache designs.
The rest of this paper is organized as follows. Section

II introduces the backgrounds of DRAM cache. Section III

analyzes tradeoffs of different cache design policies and shows

the motivation of our work. Section IV introduces the proposed

TDV cache design and Section V shows evaluation results.

Finally in Section VI, we conclude and present future work.

II. BACKGROUNDS: NVMM AND DRAM CACHE

Non-Volatile Memories (NVM) such as PCM and ReRAM

have not only larger capacity, but also larger latency than

DRAM. The performance parameters of a memory-level PCM

are shown in Table I. To combine the advantages of DRAM

and NVM, hybrid memory scheme is more preferable, and the

role of traditional DRAM has been often changed from main

memory to cache.

TABLE I
MAIN PARAMETERS OF DRAM AND PCM CELL [19]

Read latency Write latency Chip Capacity
DRAM 5ns 5ns 4GB

MLC PCM 44ns 395ns 32GB-256GB

Researchers are investigating on NVM-aware last level

cache (LLC) where the LLC is based on SRAM or eDRAM, so

the capacity of LLC is limited due to the low density and high

cost [20]. DRAM cache is a promising alternative to SRAM

cache. Figure 1 shows different organizations of DRAM cache.
On-chip die-stacked DRAM cache can be in the order

of hundreds of megabytes to several gigabytes. Die-stacked
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DRAM also delivers several times more bandwidth than off-

chip memory due to dense on-chip TSV buses. Many works

have studied die-stacked DRAM cache [8]–[11], [17], [21].

However, most of them assume that main memory is based

on off-chip DRAM rather than NVMM, as shown in Figure

1A. When replacing off-chip DRAM with NVMM, the hit

latency, miss latency and capacity are all quite different, so

previous research results need to be re-considered. One of the

limitation of die-stacked DRAM is capacity, which is relatively

small compared to hundreds GB of NVMM.

As shown in Figure 1B, software-managed hybrid memory

of DRAM and NVM is another promising technology for

NVMM [22]–[24]. The software scheme has least limitation

so large capacity off-chip DRAM and I/O bus attached NVM

can be used directly. Off-chip DRAM cache and NVM take

separate memory spaces and data migration is managed by

software (i.e., applications or OS). Each software managed

data migration takes a long latency overhead of several

microseconds. So that data are usually swapped by page

granularity (4KB or more) which results in that data are

over-fetched on a cache miss. As NVM is low-bandwidth

memory, coarse-grained data swap becomes the performance

bottleneck of page-based DRAM cache. Page-based cache is

very inefficient for applications with low spatial locality such

as random memory access pattern.

Figure 1C shows the newest Transparent Off-Chip DRAM

cache (TOD cache) scheme studied in this work. Off-chip

DRAM is managed as cache of NVMM by hardware in a

fine-granularity (e.g. 64B) and is transparent to software. TOD

cache requires that NVMM can be randomly accessed through

a memory bus like DDRx. TOD cache also requires signifi-

cantly change to CPU memory controller to manage both off-

chip DRAM cache and NVMM. Though challenging, TOD

Cache is being investigated by industry due to its potential

advantages. For the proposed Intel 3D XPoint memory, PCM is

used as NVMM together with a Transparent Off-chip DRAM

cache.

TOD cache has low access latency, high data efficiency

and no software overhead. The capacity of TOD cache can

easily reach tens of GB, which is comparable to NVMM which

can be hundreds of GB and TDV cache is flexible to scale.

TOD cache enables independent design of the processor and

memory modules. The memory system can be upgraded or

extended after the CPU chip had been released. Such flexibility

is impossible for die-stacked DRAM cache.

TOD Cache is quite different with previous die-stacked

DRAM cache and has three main factors to be further inves-

tigated: 1) The effect of extra DRAM tag access latency on

set-associative organization; 2) The effect of long miss latency

which is the latency of an NVMM access; 3) The effect of

large cache capacity. These factors bring new performance

features of TOD cache and make that previous cache design

schemes cannot be used directly for TOD cache designs.

Detailed analyses will be conducted in Section III.

���

����	
��
	
�
���

�����������	
����	�����

���

��������	
����	����� ����

���

��������	
����	����� ����

��������	
���
������	� ����������������������
������	�

�����������	�

���
� �

���	� � ���	� �

���	� � ���	� �

!"#
$��
 %�����

&!#
$��
 %�����

��'�	� �

Fig. 1. Different types of DRAM cache

III. DRAM CACHE ANALYSIS

In this section, we evaluate the design tradeoff of TOD

cache. The used benchmarks are shown in Table II. We mix

selected workloads from SPECCPU 2006. Besides SPECCPU

2006, SAP HANA [25] represents database applications and

data and query is generated by TPC-DS [26]. We also use

pagerank from BigDataBench [27] which represents query

algorithms. We use NVMain to simulate the target system [28].

System configuration of which will be shown in Section V-A.

A. Effect of Tag Latency of Set-associative Cache

For all types of cache, cache tag is needed to indicate which

data is buffered in cache. Before accessing the cached data,

its cache tag is first checked. On cache hit, access to cached

data will be issued. On cache miss, an access to the original

memory address will be issued, and then the fetched data is

put into cache according to certain insertion policy.

In our configuration, TOD cache provides a cache with

32GB capacity, and accordingly the amount of cache tags is

also large. Assuming 8-bit tag for each 64B cache line, the

total tag size for 32GB is 512MB. In such case, cache tags

must be stored in DRAM instead of SRAM buffer. Although

cache tags will not occupy many percents of the total DRAM

cache capacity, cache tag access does take one full DRAM

access latency and thus cannot be ignored.

Direct-mapped cache is a low-hit-latency design that tag and

data are stored together in one extended cache block. Alloy

cache extends the conventional cache line granularity from

64B to 72B to contain tag and data together [17]. One DRAM

burst access reads tag and data together so that hit latency is

reduced to the latency of one DRAM read. However, Alloy

cache lacks the advantage of high hit rate. According to prior

research, direct-mapped cache has a lower hit rate than set-

associative cache [18].

We make evaluations to compare the performance of direct-

mapped and set-associative TOD Cache. Figure 2 shows the re-

sults. Ideal set-associative cache represents the set-associative

organization without extra tag latency and has the same hit

latency with direct-mapped cache. We find that ideal set-

associative cache has a great performance advantage due to
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TABLE II
OVERVIEW OF BIG-MEMORY BENCHMARK

Workload Memory Bandwidth(GB/s) Footprint(GB) Description
SPEC-MIX1 17.92 (peek to 34.8) 195.2 401.bzip2 429.mcf 433.milc 464.h264ref

447.dealll 450.soplex 482.sphinx3 462.libquantum
SPEC-MIX2 12.48 (peek to 33.76) 206.8 401.bzip2 403.gcc 433.milc 464.h264ref

447.dealll 450.soplex 482.sphinx3 462.libquantum
SPEC-MIX3 16.4 (peek to 34.64) 187 400.perlbench 401.bzip2 433.milc 464.h264ref

447.dealll 450.soplex 482.sphinx3 462.libquantum
SPEC-MIX4 13.28 (peek to 34.48) 253.4 400.perlbench 401.bzip2 403.gcc 429.mcf

447.dealll 450.soplex 482.sphinx3 462.libquantum
SPEC-MIX5 10.72 (peek to 14.24) 130.6 400.perlbench 401.bzip2 403.gcc 429.mcf

433.milc 464.h264ref 482.sphinx3 462.libquantum
SPEC-MIX6 10.16 (peek to 38.32) 160.5 400.perlbench 401.bzip2 403.gcc 429.mcf

433.milc 464.h264ref 447.dealll 450.soplex
SPEC-MIX7 14.8 (peek to 24.4) 172.3 400.perlbench 401.bzip2 403.gcc 429.mcf

464.h264ref 447.dealll 482.sphinx3 462.libquantum
SPEC-MIX8 22.8 (peek to 30.4) 152.3 400.perlbench 401.bzip2 403.gcc 429.mcf

433.milc 447.dealll 450.soplex 482.sphinx3
SAP HANA 4.16 (peek to 30.88) 111.9 In-Memory Database

Pagerank 9.28 (peek to 34.48) 253.2 Search Engine
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Fig. 2. System performance of direct-mapped and set-associative cache

its high hit rate. But when considering the tag latency, set-

associative cache has lower overall performance even than

direct-mapped cache. Therefore, the problem of tag latency is

so critical that prevents TOD cache from using set-associative

directly.

B. Effect of Associativity on Hit Rate

Although set-associative suffers from tag latency, it provides

higher hit rate than direct-mapped one, because set-associative

cache can effectively reduce cache conflict misses. Lower miss

rate implies fewer NVMM accesses which are much slower.

Specifically, for TOD cache, the cache miss penalty could be

up to 10 times of cache hit latency. Therefore, TOD cache

designers must consider high hit rate as an important target to

achieve final high performance.

Victim cache is a second-level cache in which data evicted

from first-level cache will be inserted. We find that, configur-

ing set-associative victim cache together with direct-mapped

cache is an efficient way to reduce conflict cache misses. As

shown in Figure 3, we make an evaluation to compare the hit

rate of different cache organizations. In our evaluation, we take

1/4 of DRAM capacity to be victim cache which is organized

as set-associative. Although the first-level direct-mapped cache

loses 1/4 capacity, the overall cache hit rate is increased. The
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Fig. 3. Hit rate increasing of victim cache

hit rate of Direct-mapped+victim cache is close to the hit rate

of ideal set-associative cache. Victim cache decreases cache

conflict misses of direct-mapped cache effectively.

C. Effect of Tag Cache Capacity on Tag Cache Hit Rate

One way to mitigate the problem of tag latency is put all

tags in on-chip SRAM. Page-based DRAM caches, such as

Unison cache and Footprint cache [9], [29], manage data in

page size, e.g. 4KB. This would reduce the amount of tags

significantly. For the above case, 32GB TOD cache with 4KB

granularity needs only 8MB tags which is acceptable for an on-

chip SRAM buffer. But when replacement occurred in DRAM

cache, it has to take a long time and lots of bandwidth to swap

a page completely. If the miss rate is high, the performance

of memory system would still be extremely low. Besides,

capacity of SRAM buffer on chip is still limited and cannot

match the pace of DRAM cache whose capacity is increasing.

As a result, Tag-in-SRAM is not a scalable design.

Tag cache is alternative way to reduce the extra tag latency

of fine-grained TOD cache. A tag cache is an on-chip SRAM

cache only for storing cache tags. Each time a memory access

will first check whether the tag is cached in tag cache.

If matched, another DRAM access to the cached data will

be issued immediately. Only when tag is not found in tag
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Fig. 4. Tag cache hit rates in different tag cache capacities

cache should an access to DRAM cache tag be issued. A tag

cache with high hit rate will reduce most unnecessary DRAM

accesses to tag space.

Figure 4 shows the comparison results of tag cache hit rates

for different tag cache capacities. In this evaluation, we add

tag cache prefetching mechanism to improve hit rate as in

[10]. We can see that, with the tag capacities increasing, the

tag cache miss rate drops down dramatically. If a 2MB tag

cache is used for 64MB DRAM tag space, as 1:32 in Figure

4, the average hit rate will drop from 84.1% to below 58%.

This implies that for large amount of DRAM cache tags, a

small tag cache fails to hold the working set of tags and thus

cannot help much for performance.

According to our above evaluations, we conclude the main

issues of TOD cache design as: 1) Extra tag latency prevents

set-associative organization; 2) High miss latency of NVMM

demands high hit rate; 3) Low efficiency of small-capacity

tag cache. Motivated by these observations, we propose TDV

cache scheme, which fuses direct-mapped, set-associative and

tag cache together to solve these three problems simultane-

ously.

IV. TAG-DIRECT-VICTIM CACHE

In this section, we will propose Tag-Direct-Victim cache

(TDV cache) architecture. According to the evaluation results

in Section III, small tag cache is not effective for large capacity

DRAM cache, and set-associative cache can improve hit rate

but suffers from long tag access latency, and direct-mapped

cache has short hit latency but high conflict miss rate. The

main purpose of TDV cache is to take a good utilization of

SRAM tag cache, DRAM cache and DRAM tags to explore

as many as possible the advantages of direct-mapped, set-

associative cache and tag cache to achieve low average cache

hit latency and high cache hit rate simultaneously.

Figure 5 shows the structure of TDV cache. As our first

leverage, victim cache is used to mitigate the cache conflict

miss rate of direct-mapped cache. We use direct-mapped

scheme for first-level DRAM cache. Most of memory accesses

will be served by direct-mapped cache according to the eval-

uation. Since NVMM access after miss needs about a 10-fold

longer latency, even a small amount of cache misses access

to NVMM would bring relevant performance degradation. A

set-associative victim cache is integrated with direct-mapped
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Fig. 5. Structure of TDV cache

cache to improve the total hit rate. For the direct-mapped

cache, cache misses caused by cache block conflicts occur

frequently because many memory addresses are mapped to the

same set which has only one cache block space. By adding

set-associative victim cache, cache blocks evicted from direct-

mapped area could be stored in victim cache and reused later.

As such, these cache blocks could still exploit the advantage of

set-associative cache to avoid being evicted prematurely from

DRAM cache.

However, a set-associative victim cache hit access still

needs 2-3 longer latency than direct-mapped cache, which

counteracts the hit rate improvement. As our second leverage,

tag cache is used to reduce extra tag latency. Specifically, the

key point of our design is that ONLY tags for set-associative

victim cache are cached in a SRAM tag cache to utilize the

limited space as well as possible. Since set-associative victim

cache occupies only 1/4 of total DRAM cache, the total tags

that need to be cached in DRAM are reduced dramatically. In

such manner, we improve tag cache hit rate by increasing the

ratio of tag cache capacity over the total tag capacity.

Figure 6 shows the flow of one memory access in TDV

cache. Each memory access first checks tag cache. A tag

cache hit represents that the corresponding tags for current

access cache set are in SRAM tag cache. So whether the

to-be-accessed data is in victim cache set can be determined

immediately. If tag cache is missed, the direct-mapped cache

is checked first. If direct-mapped cache misses, the tag of

set-associative victim cache is loaded into tag cache to check

whether the target data is in victim cache. If yes, access goes

to victim cache. If no, a cache replacement process will start.

Figure 7 shows the DRAM cache organization. The whole

DRAM cache is divided into three areas, direct-mapped area,

victim cache area and victim-tag area. Direct-mapped area

takes the most capacity and victim cache area is relatively

small. Victim-tag area stores all the tags of set-associative

victim cache. In our study, direct-mapped area takes 75 percent

of total space and victim cache and tags takes the rest.

Direct-mapped area works like normal direct-mapped cache

and victim cache contains data which is evicted from direct-

mapped cache. Besides, victim cache is set-associative and

each set is associated with a fixed number of direct-mapped

area blocks. In Figure 7, we can see that 24 direct-mapped

cache blocks are associated to one victim cache set which

contains 8 cache blocks. This mapping relation indicates where
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Fig. 6. Memory access flow on TDV cache
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Fig. 7. DRAM row organization of TDV cache

a cache block to be inserted when it is evicted from direct-

mapped area. Each cache block is 64 bytes for a minimum

DRAM burst, so the total 32 cache blocks occupy a full DDR4

DRAM 2KB row.

The tags for direct-mapped cache lines are put in the ECC

bits and thus need not extra storage as in previous works [30].

Each victim cache set needs 8 extra tags, and each tag takes

9 bits. We choose 2-byte tag for each victim cache block

with other bits for the valid and dirty flags. For an 8-way

set-associative victim cache, each set only needs 2Bx8=16B

for tagging while a cache block is 64B, thus it is not economic

to put tag together with victim cache data in the same DRAM

row. On the contrary, we choose to use a centralized victim

cache tag storage on DRAM. Such design is convenient for

tag cache prefetching. Every DRAM burst read will prefetch

tags of 4 sets that cover 4 DRAM rows and 32 cache lines.

TDV cache keeps the advantage of direct-mapped cache. In

our evaluation in Section V, we find that most cache hits occur

in direct-mapped area. The ratio of cache hit in direct-mapped

area and victim cache is 6.17 on average. Additionally, TDV

cache improves tag cache efficiency. In Section III, we have

found that, tag cache hit rate grows with the increasing of tag

cache capacity. For TDV cache, tag cache is only associated

to the victim cache area. This means, compared to normal set-

TABLE III
SYSTEM CONFIGURATIONS

Cache Capacity 1/8 of each programs’ footprint

Memory
2 64-bit Channels, 2 Ranks/Channel,
8 devices/Rank, x8-width (1 device)

Device

DDR3-1333MHz, 8 banks,
2KB Row Buffer, 32768 Rows/bank,
Time/power parameters from
Micron SDRAM [32]

Tag Cache 16MB
Alloy cache

Access latency One DRAM read for cache tag and data
ATCache

Associativity 32-way, Random replacement policy

Access latency One DRAM read for cache tag
and one read for data if tag cache miss

TDV Cache
Associativity Victim cache area: 8-way, Random replacement policy

Access latency
One DRAM read for direct-mapped area
Two DRAM reads for victim area
if tag cache miss

associative cache, tag cache only corresponds to 1/4 capacity

of DRAM cache. Our evaluation also shows that, tag cache

hit rate increases from 69.06% to 85.67% relative to full-set-

associative cache using the same tag cache capacity.

V. EVALUATIONS

A. Experimental Methodology

Benchmarks: We evaluate 8 mixed SPECCPU 2006 bench-

marks and two other big-memory benchmarks which are

described in Section III.

Simulation Framework: We use NVMain simulator to

evaluate our TDV cache [28]. The simulator configuration is

shown in Table III. Our traces are collected from benchmarks

running on an Intel E5 2620 v2 CPU platform equipped with

eight 32GB DDR3 LRDIMM (256GB memory capacity) [31].

For performance analysis, we use sampled trace segments

and NVMain integrated with checkpoint support. For each

benchmark, one thousandth of the original full traces are

sampled to be simulated in NVMain. The total number of

running traces of each benchmark in NVMain is 1 billion. We

compare TDV cache with Alloy cache and ATCache that have

the same capacity of whole DRAM cache. According to the

work in [10], we add tag cache prefetching for TDV cache.

Note that ATCache uses the same hit prefetching mechanism.

B. Results and Analysis

First we evaluate the hit rates of different DRAM cache

organizations. Because the hit rate calculation does not need

cycle-accurate simulation, the evaluation is very fast and can

be conducted using complete program traces. The results are

shown in Figure 8. On average, TDV cache improves the hit

rates by 4.5% over Alloy cache. TDV cache’s hit rate is also

close to ATCache up to 96.5%. Due to high cache hit rate by

using large-capacity DRAM cache, the miss rate is reduced

by 18.0% on average compared to Alloy cache. The result

implies that small set-associative victim cache in TDV cache

improves the hit rate effectively.
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Fig. 8. Hit rates of DRAM cache using different cache organizations
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Fig. 9. Ratio of cache hit accesses on direct-mapped area and victim cache

Figure 9 shows the ratio of the numbers of hits in direct-

mapped area over that in victim cache area. On average,

the ratio is 6.17, which implies that most DRAM cache hits

happen in direct-mapped area and thus low average hit access

latency has been attained.

Secondly, we compare the hit rate of tag cache with

ATCache. In experiments, we add tag cache prefetching to

read tags of continuous 4 sets to tag cache once tag cache

replacement occurs. This hit prefetching policy is the same

as that in ATCache. Results are shown in Figure 10. TDV’s

tag cache shows a higher hit rate than ATCache’s tag cache

by 24.05% on average. As victim cache only takes 25% of

whole DRAM cache capacity, the capacity ratio of tag cache

over victim cache tag space becomes 1:8 while the ratio is

1:32 in ATCache. The increasing of capacity ratio eases the

cache competition and reduces the tag cache misses caused by

conflicts.

With the improved DRAM cache hit rate and tag cache hit

rate, we also evaluate the accurate performances of different

DRAM cache configurations using NVMain on sampled trace
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Fig. 10. Tag cache hit rates of TDV cache and ATCache
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Fig. 11. System performance of different cache configurations
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Fig. 12. Energy consumption of different cache configurations

segments. Figure 11 shows the simulated running time compar-

ison of different cache structures using the same trace inputs.

The values are normalized to those of Alloy cache. TDV cache

has the best performance among all the cache configurations.

Compared to Alloy cache, the maximum performance im-

provement of TDV cache is more than 10% for HANA and

SPEC-MIX8. Compared to Alloy cache and ATCache, TDV

cache achieves 6.3% and 8.3% performance improvement

respectively. This validates our analysis in Section IV, and

verifies that TDV cache achieves short hit latency and high

hit rate simultaneously.

Besides performance results, we also evaluate the energy

consumptions. Figure 12 shows the energy results that are nor-

malized to the values of Alloy cache. The energy consumption

of TDV cache is less than that of Alloy cache by 4.9% on

average (excluding the energy consumption of tag cache).

We also evaluate the effect of different capacity ratio of

direct-mapped area over victim area. The results are shown in

Figure 13. Smaller set-associative victim cache can improve

tag cache hit rate further, but the DRAM cache hit rate

becomes lower. On the contrary, larger set-associative victim

cache increases DRAM cache hit rate but decreases the hit rate

of tag cache. As shown in Figure 13, the ratio of 3:1 achieves

the optimal performance for most programs. Compared to the

ratio of 1:1 and 7:1, the performance improvements of 3:1 are

1.01% and 4.93% on average, respectively.

VI. CONCLUSIONS

Providing an efficient DRAM cache design for emerging

NVMM is necessary but challenging. High capacity ratio of

TOD cache over NVMM brings a new design space for cache

architecture design. Tags of TOD cache must be stored off-

chip due to its large size. Off-chip tag access latency makes
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Fig. 13. System performance of different capacity ratios of direct-mapped
area over victim area

it difficult to directly adopt the complex set-associative cache

design. Our analysis shows that direct-mapped cache achieves

low hit rate but set-associative cache suffers from extra tag

latency even with a small SRAM tag cache. We propose

Tag-Direct-Victim cache (TDV cache) scheme to combine all

advantages from direct-mapped, set-associative and tag cache.

By associating SRAM tag cache only with a set-associative

victim cache which only takes 1/4 capacity of whole DRAM

cache, TDV cache achieves low cache hit latency and high

cache hit rate simultaneously. Evaluations show performance

improvement of 6.3% and 8.3% in average than state-of-

the-art direct-mapped (Alloy cache) and set-associative cache

(ATCache). TDV cache presents an effective tradeoff in the

huge design space of TOD cache of NVMM.
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